
Mission Report for the Maritimes Region Atlantic Zone Monitoring Program 2025 Spring Survey (EN728)

Lindsay Beazley, Diana Cardoso, Christopher Gordon, Carina Gjerdrum

Ocean and Ecosystem Sciences Division Fisheries and Oceans Canada Bedford Institute of Oceanography P.O. Box 1006 Dartmouth, Nova Scotia, Canada **B2Y 4A2**

2025

Canadian Technical Report of Hydrography and Ocean Sciences 407

Canadian Technical Report of Hydrography and Ocean Sciences

Technical reports contain scientific and technical information of a type that represents a contribution to existing knowledge but which is not normally found in the primary literature. The subject matter is generally related to programs and interests of the Oceans and Science sectors of Fisheries and Oceans Canada.

Technical reports may be cited as full publications. The correct citation appears above the abstract of each report. Each report is abstracted in the data base *Aquatic Sciences and Fisheries Abstracts*.

Technical reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page.

Regional and headquarters establishments of Ocean Science and Surveys ceased publication of their various report series as of December 1981. A complete listing of these publications and the last number issued under each title are published in the *Canadian Journal of Fisheries and Aquatic Sciences*, Volume 38: Index to Publications 1981. The current series began with Report Number 1 in January 1982.

Rapport technique canadien sur l'hydrographie et les sciences océaniques

Les rapports techniques contiennent des renseignements scientifiques et techniques qui constituent une contribution aux connaissances actuelles mais que l'on ne trouve pas normalement dans les revues scientifiques. Le sujet est généralement rattaché aux programmes et intérêts des secteurs des Océans et des Sciences de Pêches et Océans Canada.

Les rapports techniques peuvent être cités comme des publications à part entière. Le titre exact figure au-dessus du résumé de chaque rapport. Les rapports techniques sont résumés dans la base de données *Résumés des sciences aquatiques et halieutiques*.

Les rapports techniques sont produits à l'échelon régional, mais numérotés à l'échelon national. Les demandes de rapports seront satisfaites par l'établissement auteur dont le nom figure sur la couverture et la page de titre.

Les établissements de l'ancien secteur des Sciences et Levés océaniques dans les régions et à l'administration centrale ont cessé de publier leurs diverses séries de rapports en décembre 1981. Vous trouverez dans l'index des publications du volume 38 du *Journal canadien des sciences halieutiques et aquatiques*, la liste de ces publications ainsi que le dernier numéro paru dans chaque catégorie. La nouvelle série a commencé avec la publication du rapport numéro 1 en janvier 1982.

Canadian Technical Report of Hydrography and Ocean Sciences 407

2025

MISSION REPORT FOR THE MARITIMES REGION ATLANTIC ZONE MONITORING PROGRAM 2025 SPRING SURVEY (EN728)

by

Lindsay Beazley¹, Diana Cardoso¹, Christopher Gordon¹, and Carina Gjerdrum²

¹Ocean and Ecosystem Sciences Division Fisheries and Oceans Canada Bedford Institute of Oceanography P.O. Box 1006 Dartmouth, Nova Scotia Canada, B2Y 4A2 ²Canadian Wildlife Service Environment and Climate Change Canada 45 Alderney Drive Dartmouth, Nova Scotia Canada, B2Y 2N6

© His Majesty the King in Right of Canada, as represented by the Minister of the Department of Fisheries and Oceans, 2025

Cat. No. Fs97-18/407E-PDF ISBN 978-0-660-79731-1 ISSN 1488-5417 https://doi.org/10.60825/3wjc-3389

Correct citation for this publication:

Beazley, L., Cardoso, D., Gordon, C., and Gjerdrum, C. 2025. Mission Report for the Maritimes Region Atlantic Zone Monitoring Program 2025 Spring Survey (EN728). Can. Tech. Rep. Hydrogr. Ocean Sci. 407: vi + 72 p. https://doi.org/10.60825/3wjc-3389

CONTENTS

ΑI	BSTR	ACT	V
RI	ÉSUN	1É	vi
1	Miss	sion Overview	1
	1.1	Background	1
	1.2	Objectives	1
		1.2.1 Primary	2
		1.2.2 Secondary	2
		1.2.3 External to DFO	2
	1.3	Participants	3
	1.4	Mission Synopsis	4
2	Ach	ievements & Impacts	8
3	Sun	nmary of Operations	12
	3.1	CTD-Rosette Operations	26
		3.1.1 CTD-Rosette Configuration	26
		3.1.2 CTD-Rosette Deployments	26
		3.1.3 CTD Data Post-Processing	30
		3.1.4 Water Sampling	30
		3.1.5 Data Accessibility	31
	3.2	Vertical Ring Net Tows	36
		3.2.1 Data Accessibility	36
	3.3	Argo Floats	37
	3.4	Flow-Through Systems	39
		3.4.1 TSG system and associated sensors	39
		3.4.2 Imaging Flow Cytobot	41

Α	Vert	tical Profiles of Temperature, Salinity, Dissolved Oxygen	61
AF	PPEN	IDICES	61
8	Refe	erences	59
7	Ack	nowledgements	58
	6.4	Flow-Through System	57
	6.3	Mooring Operations	56
	6.2	Ring Net Operations	56
	6.1	CTD Operations	56
6	Ope	erational Considerations and Issues of Note	56
	5.3	Data Submission to Global Telecommunications Systems	55
	5.2	DFO At-sea Reporting Template (DART)	54
	5.1	Metadata Collection and Archival	54
5	Data	a Management Summary	54
	4.4	The Gully and St. Ann's Bank MPAs	50
	4.3	Results	49
	4.2	Methods	49
	4.1	Background	49
4	Sea	birds and Marine Mammal Observations	49
		3.6.4 Availability of Shipboard Data	48
		3.6.3 Echosounders	48
		3.6.2 Shipboard Flow-Through System	48
		3.6.1 Vessel-Mounted Acoustic Doppler Current Profiler (VMADCP)	47
	3.6	Shipboard Science Systems	47
	3.5	Mooring Operations	45

ABSTRACT

Beazley, L., Cardoso, D., Gordon, C., and Gjerdrum, C. 2025. Mission Report for the Maritimes Region Atlantic Zone Monitoring Program 2025 Spring Survey (EN728). Can. Tech. Rep. Hydrogr. Ocean Sci. 407: vi + 72 p. https://doi.org/10.60825/3wjc-3389

Fisheries and Oceans Canada's (DFO) Maritimes Region Atlantic Zone Monitoring Program 2025 spring survey was conducted on the Research Vessel Endeavor from March 29 to April 18, 2025. A total of 13 scientific staff participated in the mission and led the deployment of various oceanographic equipment across a network of fixed monitoring stations, including CTD-Rosette deployments for the collection of vertical profiles of e.g., temperature and salinity, and water samples from pre-determined depths, vertical ring net tows for zooplankton sample collection, and Argo float deployments in support of the International Argo program. Additionally, a single passive acoustic monitoring mooring was deployed in Roseway Basin, Scotian Shelf, and a series of acoustic receiver moorings were recovered in the Gully Marine Protected Area (MPA) in support of a DFO-Ocean Tracking Network collaboration to study the movement of tagged species in and around the MPA. In collaboration with the Woods Hole Oceanographic Institution, an Imaging Flow Cytobot was used to collect high-resolution images of phytoplankton from surface waters sampled while underway. This report provides an overview of the mission's objectives, achievements, gear operations and operational issues. A summary of the seabird and marine mammal observations collected during the mission is presented, as is the vertical structure in temperature, salinity, and dissolved oxygen for each station occupied.

RÉSUMÉ

Beazley, L., Cardoso, D., Gordon, C., and Gjerdrum, C. 2025. Mission Report for the Maritimes Region Atlantic Zone Monitoring Program 2025 Spring Survey (EN728). Can. Tech. Rep. Hydrogr. Ocean Sci. 407: vi + 72 p. https://doi.org/10.60825/3wjc-3389

En 2025, le relevé printanier du Programme de monitorage de la zone Atlantique dans la région des Maritimes de Pêches et Océans Canada (MPO) a été effectué à bord du navire de recherche Endeavor du 29 mars au 18 avril 2025. Au total, 13 membres du personnel scientifique ont participé à la mission et dirigé le déploiement de divers équipements d'échantillonnage océanographique dans un réseau de stations de surveillance fixes, y compris le déploiement : d'instruments de mesure de la conductivité, de la température et de la profondeur (CTP) et de rosettes pour recueillir des données sur les profils verticaux (p. ex. température et salinité) et des échantillons d'eau à des profondeurs prédéterminés; de traits de filet verticaux recueillir des échantillons de zooplancton; et de flotteurs Argo à l'appui du programme international Argo. De plus, un seul amarrage de surveillance acoustique passive a été déployé dans le bassin Roseway, sur le plateau néo-écossais, et une série d'amarrages récepteurs acoustiques ont été récupérés dans la zone de protection marine (ZPM) du Gully à l'appui d'une collaboration entre le MPO et l'Ocean Tracking Network pour étudier le déplacement des espèces marquées dans la ZPM et autour de celle-ci. En collaboration avec la Woods Hole Oceanographic Institution, un cytomètre submersible d'imagerie Flow CytoBot a été utilisé pour recueillir des images à haute résolution du phytoplancton dans les eaux de surface échantillonnées pendant la navigation. Le présent rapport fournit une vue d'ensemble des objectifs, des réalisations, de l'utilisation des engins et des enjeux opérationnels de la mission. Un résumé des observations d'oiseaux de mer et de mammifères marins recueillies pendant la mission est présenté, tout comme la structure verticale de la température, de la salinité et de l'oxygène dissous pour chaque station utilisée.

1 Mission Overview

1.1 Background

As part of a collaborative agreement between the Department of Fisheries and Oceans Canada (DFO), Natural Resources of Canada (NRCan), and the University of Rhode Island, U.S.A, the Research Vessel (RV) Endeavor was used to deliver the DFO Maritimes Region Atlantic Zone Monitoring Program (AZMP) 2025 spring survey of the Scotian Shelf and Gulf of Maine. The AZMP was initiated in 1998 with the aim to detect, track, and predict changes in the state and productivity of waters across the northwest Atlantic. The AZMP's sampling strategy in the Maritimes Region is based on high-frequency (weekly, biweekly, monthly) data collection, hydrographic data collection on the winter and summer Ecosystem Trawl Surveys, and dedicated oceanographic surveys conducted each spring and fall. During the EN728 mission, data and sample collection was conducted across a network of fixed monitoring stations spanning from the Gulf of Maine and the Northeast Channel in the west, and across the Scotian Shelf to the Cabot Strait in the east. Scientific activities included 1) CTD-Rosette deployments for the collection of vertical profile data and water samples for nutrient, salinity, dissolved oxygen, and chlorophyll a determination, ocean acidification and phytoplankton monitoring, 2) vertical ring net tows for the collection of data on zooplankton abundance and biomass, and 3) the collection of continuous surface measurements along the mission track using a flow-through system.

The RV *Endeavor* is owned by the U.S. National Science Foundation (NSF) and operated under a Charter Party Agreement by the University of Rhode Island (URI) Graduate School of Oceanography to support multidisciplinary oceanographic missions led by both US scientists and the international community. Built in 1975, this 55-metre long vessel contains three lab spaces for science use, a science network for data sharing and access, two overboarding frames on its main deck, a starboard-side J-frame with two winches spooled with 0.322" electromechanical cable to support CTD-Rosette deployments, and a stern A-frame. The vessel's home port is 215 South Ferry Road, GSO, University of Rhode Island, Narragansett, RI, and missions are scheduled by the University-National Oceanographic Laboratory System (UNOLS) Ship Scheduling Committee. The RV *Endeavor* was previously chartered by DFO in 2017 to deliver the AZMP fall mission in the Maritimes Region (mission ID EN606).

This report provides an overview of the mission objectives, achievements and impacts, and a summary of operations and data collected.

1.2 Objectives

The following outlines the primary and secondary objectives, along with those supporting external partnerships, that were established during the planning phase of the EN728 mission. In addition to the primary objective to collect spring observations of physical, chemical, and lower trophic-level biological parameters in support of the Maritimes Region AZMP as described above, the mission was also tasked with the re-deployment of a passive acoustic monitoring (PAM) mooring in Roseway Basin in support of DFO's North Atlantic Right Whale Monitoring Program. This mooring was deployed in the fall of 2024 during the DY18402 AZMP mission to monitor the presence and

distribution of North Atlantic right whales, but unintentionally resurfaced several months later due to malfunction of its release system. The mission was also tasked with the recovery of 15 acoustic receiver moorings situated in an array at the head of the Gully MPA in support of a collaboration between DFO and the Ocean Tracking Network to evaluate habitat use, behaviour, and movement patterns in and around the Gully MPA by tagged species, particularly juvenile Atlantic halibut.

1.2.1 Primary

- Obtain spring observations on physical, chemical, and lower trophic-level biological oceanographic conditions at fixed sampling stations along core <u>Atlantic Zone Monitoring</u> <u>Program</u> sections within the Maritimes Region (Contact: <u>Lindsay.Beazley@dfo-mpo.gc.ca</u>)
- 2. Deploy 1 passive acoustic monitoring mooring in Roseway Basin in support of DFO's Whales Initiative (Contact: Angelia.Vanderlaan@dfo-mpo.gc.ca)
- 3. Recover 15 acoustic receiver moorings situated in an array at the head of the Gully MPA in support of a joint DFO-Ocean Tracking Network (OTN) project to evaluate how tagged species, particularly juvenile Atlantic halibut, utilize the MPA (Contact: Ryan.Stanley@dfo-mpo.gc.ca)

1.2.2 Secondary

- 1. Deploy ARGO floats in support of the <u>International Argo Float Program</u> (Contact: <u>Blair.Greenan@dfo-mpo.gc.ca</u>)
- 2. Nutrients and hydrography across the Northeast Channel and Gulf of Maine as part of <u>NERACOOS</u> Cooperative Agreement (Contacts: <u>Emmanuel.Devred@dfo-mpo.gc.ca</u> & <u>Catherine.Johnson@dfo-mpo.gc.ca</u>)
- 3. Carry out hydrographic, chemical and biological sampling at stations in The Gully in support of Marine Protected Area (MPA) monitoring (Contact: Lindsay.Beazley@dfo-mpo.gc.ca)
- 4. Carry out hydrographic, chemical and biological sampling at stations in the <u>St. Anns Bank MPA</u> as a continued monitoring effort in support of Marine Protected Area (MPA) monitoring (Contact: Lindsay.Beazley@dfo-mpo.gc.ca)
- 5. Conduct hydrographic, chemical and biological sampling across the mouth of the Laurentian Channel in support of current modelling efforts (Contact: Zeliang.Wang@dfo-mpo.gc.ca)
- 6. Collect underway and CTD water samples at specified locations and depths to fulfill the regional component of an Aquatic Climate Change Adaptation Services Program (ACCASP) initiative investigating the delineation of ocean acidification and calcium carbonate saturation state of the Atlantic zone (Contact: Kumiko.Azetsu-Scott@dfo-mpo.gc.ca)

1.2.3 External to DFO

1. Bird and marine mammal observations as part of ECCC-CWS Eastern Canada Seabirds at Sea (ECSAS) (Contact: Carina.Gjerdrum@canada.ca)

- 2. Collect high-resolution imagery of phytoplankton species while underway using an Imaging Flow Cytobot (IFCB) in collaboration with the Woods Hole Oceanographic Institution (Contacts: Dennis.McGillicuddy (dmcgillicuddy@whoi.edu) & Emmanuel.Devred@dfo-mpo.gc.ca)
- 3. Collect water samples for the <u>Bertrand lab</u> at Dalhousie University to evaluate microbial protein and metabolites from the Scotian Shelf to better understand phytoplankton growth, phytoplankton bacterial interactions, and the role of cobalamin and other B-vitamins in phytoplankton community composition and productivity (Contact: <u>Erin.Bertrand@dal.ca</u>)
- 4. Collect water samples for the <u>LaRoche lab</u> at Dalhousie University from strategic locations and depths to support microbial community analyses via metabarcoding and metagenomics (Contact: <u>Julie.LaRoche@dal.ca</u>)
- 5. Collect water samples for the <u>Buchwald lab</u> at Dalhousie University from strategic locations and depths to measure nitrate isotopes (d15N and d18O) to interpret changes in nutrient uptake and supply on the Scotian Shelf (Contact: cbuchwald@dal.ca)

In addition to the three primary objectives, data and samples were also collected in support of other departmental priorities and research initiatives led by DFO's external partners. This included participation by a wildlife observer to collect seabird observations in support of the Environment and Climate Change Canada (ECCC) Canadian Wildlife Service's (CWS) Eastern Canada Seabirds at Sea (ECSAS) program (Gjerdrum et al. 2012), and the passive collection of high-resolution images of phytoplankton from surface waters sampled along the mission track using an Imaging Flow Cytobot (IFCB), as part of a collaborative agreement between DFO and the Woods Hole Oceanographic Institution to improve understanding of the distribution of harmful algal bloom species and the processes impacting ocean health.

Dalhousie University personnel also took part in the mission to collect data and samples in support of graduate student projects led by the laboratories of Drs. Carly Buchwald, Julie LaRoche, and Erin Bertrand. The focus of this research was on evaluating nitrate stable isotope signatures and variability in the nutrient supply of the Scotian Shelf (Buchwald); understanding phytoplankton growth, phytoplankton-bacterial interactions, and the role of cobalamin and other B-vitamins in phytoplankton community composition and productivity (Bertrand); and characterizing the microbial communities of the Scotian Shelf through the collection of eDNA samples (LaRoche). This research is considered complementary to the monitoring conducted by the AZMP, and aids in the understanding of the biogeochemical processes of the Scotian Shelf.

1.3 Participants

A total of 13 scientific staff participated in the EN728 mission (see Table 1), including nine DFO personnel, one seabird observer from Environment and Climate Change Canada's Canadian Wildlife Service, two Dalhousie University students representing the laboratories of Drs. Carolyn Buchwald, Julie LaRoche, and Erin Bertrand, and one graduate student from the University of Rhode Island's Graduate School of Oceanography. The chief scientist was Lindsay Beazley, with Chris Gordon as night shift captain. Mooring technician Adam Hartling led all mooring operations

and also assisted with CTD operations and the management of the Deep SUNA nitrate sensor data during day shift. Science staff were split into day (0700-1900) and night (1900-0700) watches.

A total of 14 ships crew manned the vessel plus two URI marine technicians. The lead marine technician was Claire Mayorga (24:00 - 12:00), with Lynne Butler covering 12:00 - 24:00. Both marine technicians assisted with the deployment and recovery of all scientific equipment and led the communications with the winch operator while on deck. The technicians also managed the IFCB system during the mission. The captain of the RV *Endeavor* was Master Christopher Armanetti.

Table 1. List of science staff participants of the 2025 spring AZMP mission (EN728). Affiliation is Department-Section. OMOS = Ocean Monitoring and Observation Section; OETS = Ocean Engineering and Technology Section; OSM = Ocean Stressors and Modeling; ECCC-CWS = Environment and Climate Change Canada-Canadian Wildlife Service.

	Name	Affiliation	Duty	Shift
1	Nicole Smith	DFO-OSM	Water sampling, filtration	Day
2	Kristen Wilson	DFO-OMOS	Water sampling, filtration	Night
3	Melanie Hardy	DFO-OMOS	CTD acquisition computer	Day
4	Chris Gordon	DFO-OMOS	CTD acquisition computer/Night shift captain	Night
5	Lindsay Beazley	DFO-OMOS	Chief scientist, ring net operator	Day
6	Rebecca Milne	DFO-OMOS	Ring net operator	Night
7	Diana Cardoso	DFO-OESD	Data manager	Night
8	Adam Hartling	DFO-OETS	CTD operations, SUNA sensor	Day
9	Chris Beck	DFO-OETS	CTD operations, SUNA sensor	Night
10	Jacob Comeau- Ouellette	ECCC-CWS	Seabird Observer	Day
11	Anna Gleason	Dalhousie University	Water sampling, filtration	Day
12	Sofia Dragoti	Dalhousie University	Water sampling, filtration	Night
13	Jasper Meagher	University of Rhode Island	Water sampling, lab support	Day

1.4 Mission Synopsis

The RV *Endeavor* departed Narragansett, RI on the morning of Monday March 24, 2025 and began its transit to Nova Scotia for the start of the EN728 mission. The transit took over 48 hours, with the vessel meeting the Halifax Harbour pilot at 13:30 ADT on Wednesday, March 26. Upon arrival, the *Endeavor* berthed along the south side of the Bedford Institute of Oceanography's finger pier, where it remained for mobilization. On Thursday, March 27, mobilization of science equipment for the EN728 mission began at 08:00 ADT. A series of steel cages with equipment were brought over to the vessel and loaded onto its main deck using the vessel's knuckleboom crane. The remainder of the day was spent dispersing and setting up various laboratory equipment in the Main, Special Purpose, and Wet laboratories on board.

On Friday, March 28, a familiarization meeting was held at 10:30 ADT with URI marine technicians Claire Mayorga and Lynne Butler to review the safety procedures and expectations for scientific operations. Afterwards, the remaining scientific and mooring equipment was loaded on the vessel, and mobilization was completed that afternoon.

After mobilization was completed, chief scientist Lindsay Beazley reviewed the upcoming weather forecast. A storm was forecasted to impact the Scotian Shelf starting on Monday, March 31 that would cause high winds and seas that would last until Wednesday, April 2. In light of this, a decision was made to alter the mission itinerary to facilitate the deployment of a large passive acoustic monitoring (PAM) mooring in Roseway Basin before the arrival of the storm. Instead of heading towards the Yarmouth Line, the itinerary was revised so that the AZMP's core Browns Bank Line (BBL) would be occupied first, with deployment of the PAM mooring occurring in between stations BBL_02 and BBL_03. This would ensure the PAM mooring was deployed during safe operating conditions.

On Saturday, March 29, all science staff boarded the vessel for 08:00 ADT. A ship's familiarization meeting was held with the second officer to review safe operating procedures and drill protocols while the RV *Endeavor* prepared for departure. The vessel departed the BIO pier at 09:30 ADT after boarding the Halifax Harbour pilot. After transiting through the Halifax Harbour and disembarking the pilot, the vessel headed towards the first station of the mission, the AZMP's high-frequency station Halifax-2 (HL_02) located 30 nm outside the Halifax Harbour. Operations at this station began with a CTD-Rosette deployment, followed by two vertical ring net tows and a secchi disc deployment. After completion of these activities, a decision was made to change the order of operations for all stations going forward so that the vertical ring net tow was completed first, followed by the CTD-Rosette deployment. This allowed for water sampling at the rosette to occur during the transit between stations, and provided unimpeded deck space to safely recover the net and its deployment weight.

Upon completion of activities at HL_02, the RV *Endeavor* proceeded towards the BBL, where stations BBL_01 and BBL_02 were sampled prior to arrival at the PAM mooring station in Roseway Basin (station ROPB) at ~ 11:45 UTC, Sunday, March 30. Deployment of the mooring was completed at 13:00 UTC, and the vessel continued towards the remaining stations on the BBL. After completion of the final station (BBL_07) on Monday, March 31, the *Endeavor* headed north towards the start of the Yarmouth Line (YL), which was expected to be more sheltered from the pending storm. Upon arrival at station YL_01, conditions were deemed suitable for operations, and deployment of the ring net occurred at ~ 19:00 UTC that same day. Conditions remained favourable to continue and complete operations along the YL. Following this, the Portsmouth Line was occupied, followed by the 10 stations of the Northeast Channel Line. The sea state remained high while in this area, resulting in challenging working conditions while sampling on deck and deploying ring nets. On several stations, the ring net crossbow slid down the wire, resulting in aborted operations and a re-deployment of equipment.

After completion of the Northeast Channel Line, the vessel proceeded towards the first station on the Halifax Line, HL_01, arriving at ~22:30 UTC on April 4. Over the course of nearly two days, all stations on the Halifax Line were successfully completed. The first Argo float deployment of the mission occurred at station HL_07 after completion of ring net and CTD-Rosette operations. The vessel then proceeded to the next work location, The Gully Marine Protected Area (MPA), where an array of 15 Ocean Tracking Network (OTN) acoustic receiver moorings were planned for

recovery. Deployed for approximately four years, these moorings were part of a DFO-OTN project to evaluate the movement of tagged species, particularly juvenile Atlantic halibut, in and around the MPA. During the transit to The Gully, the Captain and chief scientist reviewed the upcoming weather conditions for the week, and noted the development of a significant storm that would impact the Sable Island Bank area on the evening of Tuesday, April 8 into Wednesday, April 9. Consequently, the chief scientist planned to sample as many AZMP CTD-Rosette/ring net stations as possible during the overnight hours of Sunday, April 6 to Monday, April 7, and position the vessel on the first mooring station, G01, at daylight on Monday, April 7.

The vessel arrived at AZMP station GUL_04 at ~03:30 UTC on Monday, April 7. As sampling from the rosette took longer than anticipated, a decision was made not to sample a second AZMP CTD station, and instead head to the first mooring station. The vessel arrived at mooring station G01 at ~ 11:30 UTC on Monday, April 7. Communications were quickly established with the mooring and it was released. The mooring assembly was recovered using the vessel's knuckleboom crane. The vessel then proceeded to the other mooring stations located across the mooring array. Due to either poor health status or an inability to communicate, the moorings at stations G02, G03, and G12 could not be recovered. See the Mooring Operations section below for further details.

Upon departure from The Gully MPA, the weather conditions for the eastern Scotian Shelf and Laurentian Channel were reviewed again. The forecast was predicting significant winds (up to 35 knots) and seas (up to 4.5 m) to impact the eastern Scotian Shelf. A decision was made to transit towards the next work area, the Laurentian Channel Mouth (LCM) section, but with the expectation that conditions might not be favourable to conduct science operations. After the vessel arrived at station LCM_01 at midnight on April 9, the conditions were assessed and deemed unfavourable for science operations. The bridge positioned the vessel to provide the most comfort for those on board, and waited out the storm. Conditions improved enough to allow science operations to resume at 19:00 UTC on April 9, resulting in a loss of 16 hours to the program. All 10 stations on the LCM line were completed successfully by 19:18 UTC on April 10, and the vessel moved on to its next section, the Louisbourg Line (LL), arriving at station LL_09 at 07:09 UTC on April 11. The second Argo float was deployed after ring net and CTD operations were completed at this station. All other remaining stations on the Louisbourg Line were completed successfully. Operations at the final station on the line, LL_01, were completed at 16:08 UTC on April 12, and the vessel proceeded to its next work area, the Cabot Strait.

Operations on the Cabot Strait Line (CSL) began at station CSL_01 located east of Cape Breton, at 00:21 UTC on April 13. Conditions while working in the area were favourable, and no ice was observed. The vessel worked from west to east, completing operations at station CSL_06 located off Port Aux Basques, Newfoundland, approximately 14 hours later at 14:12 UTC. The vessel then headed towards the last planned section, the St. Anns Bank (STAB) Line, and began operations at station STAB_06 located east of the St. Anns Bank MPA. Operations at the final station on the St. Anns Bank Line (STAB_01) concluded at 11:26 on Monday April 14, marking the completion of the planned activities for the EN728 mission.

As all planned activities were completed five days in advance of the scheduled disembarkation of Saturday, April 19th, proposals for additional data collection in support of other objectives were reviewed. The consensus among the regional AZMP leads was to prioritize the remaining ship time to 1) occupy five stations of the extended Halifax Line (HL_08 through HL_12) in support of DFO's Atlantic Zone Off-shelf Monitoring Program (AZOMP), which were not sampled that year, and 2)

occupy seven stations located on Sable Island Bank, west of Sable Island, that were sampled in 2022 during the spring AZMP mission (AT4802) to evaluate the effects of potential seal fertilization on the water column.

As Sable Island Bank was on route to the extended Halifax Line, the stations there were occupied first. The vessel transited from the St. Anns Bank area towards Sable Island Bank (SIB), and began CTD-Rosette operations at station SIB_11 at 22:37 UTC on Monday April 14. A review of sea surface chlorophyll *a* from satellite imagery (E. Devred, personal communication) indicated high levels of chlorophyll on Sable Island Bank during the time of sampling, suggesting the spring bloom was still occurring in the area. Phytoplankton observations from the Imaging Flow Cytobot (IFCB) installed on the vessel suggested that the bloom was dominated by one species, a member of the genus *Leptocylindrus*, a long, cylindrical diatom. Operations on the last planned SIB station (SIB_02) were completed on Tuesday April 15 at 21:06 UTC, and the vessel proceeded towards the extended Halifax Line.

The chief scientist reviewed the upcoming weather conditions for the central Scotian Shelf with the Captain, and noted that a significant storm would potentially impact the central Scotian Shelf and slope. Consequently, a decision was made to start at station HL_08 and work south, completing as many stations on the extended Halifax Line as possible before conditions worsened. The vessel arrived at HL_08 at 02:33 UTC on April 16 and operations began with deployment of the 202 μm ring net, followed by a CTD-Rosette cast. Conditions began to worsen as the vessel transited south, and when at HL_11, a decision was made to cancel operations at the final station, HL_12. Upon completion of the CTD-Rosette deployment at HL_11, the vessel departed the extended Halifax Line and transited north towards station HL_02, arriving at 23:45 UTC on Thursday April 17. Operations began with the deployment of the 202 and 76 μm ring net systems, followed by the CTD-Rosette. Once operations were completed, the vessel transited north towards the Halifax pilot station outside the mouth of Halifax Harbour.

The Halifax Harbour pilot was scheduled for Friday April 18 at 08:30 ADT. After the pilot boarded, the vessel began its transit through the Halifax Harbour, and arrived at the BIO at \sim 10:00 local time. The vessel berthed along the south side of the BIO finger pier. Demobilization activities began at 12:30 ADT. Wire baskets were craned onto the vessel using its knuckleboom crane and filled with science equipment, and transfered back onto the pier where they were transported to a storage bay. Demobilization activities were completed at \sim 15:00 ADT on Friday April 18, marking conclusion of the EN728 mission.

2 Achievements & Impacts

Upon conclusion of the EN728 mission, nearly all 14 planned objectives were either fully or partially completed (Table 2). CTD-Rosette and ring net deployments were successfully completed at all core and secondary AZMP stations, and the PAM mooring was deployed successfully in Roseway Basin. Of the 15 OTN acoustic receiver moorings, only 12 were successfully recovered (see the Mooring Operations section below for further details).

Additional time was available at the end of the survey for data and sample collection in support of other DFO initiatives and external projects. A total of seven CTD-Rosette and ring net stations located on the leeward side of Sable Island were occupied as part of a DFO-led project to evaluate the effects of grey seal fertilization on the surrounding water column in support of DFO Marine Spatial Planning and Marine Conservation Targets initiatives. Samples and data were also collected from these stations in support of an associated Dalhousie University project to evaluate whether vitamin fertilization is also occurring due to the increasing presence of grey seals during their overwintering period on Sable Island.

Stations HL_08 through HL_11 of the extended Halifax Line were occupied in support of DFO's Atlantic Zone Off-Shelf Monitoring Program (AZOMP). A final objective to collect surface waters from AZMP high-frequency station Halifax-2 was added during the mission in support of a Dalhousie University project to evaluate the presence of cobalamin during the spring season. Additionally this experiment will assess cobamide remodelling capacity of the microbial community at this near-coastal site.

A total of 16 hours were lost to the program due to inclement weather prior to occupation of the Laurentian Channel Mouth line. However, this had a negligible impact on the EN728 mission and completion of its objectives as several weather contingency days were built into the mission schedule. Additionally, station HL_12 of the extended Halifax Line, which was added to the program after all planned objectives were completed, could not be sampled due to time constraints and concerns that an upcoming weather system would impact the ability of the vessel to return to port on time for disembarkation. No other time was lost due to inclement weather, and no loss of program time was incurred due to scientific equipment malfunction.

Table 2. Primary and secondary objectives of the spring AZMP mission (EN728), and their status upon conclusion of the mission.

Objective	Status	Comment
Primary		
1. Obtain spring observations on physical, chemical, and lower trophic-level biological oceanographic conditions at fixed sampling stations along core Atlantic Zone Monitoring Program sections within the Maritimes Region	Completed	
2. Deploy 1 passive acoustic mooring in Roseway Basin in support of DFO's Whales Initiative	Completed	
3. Recover 15 acoustic receiver moorings situated in an array at the head of the Gully MPA in support of a joint DFO-Ocean Tracking Network (OTN) project to evaluate how tagged species, particularly juvenile Atlantic halibut, utilize the MPA	Partially completed	OTN acoustic receiver moorings at two stations did not surface, and communications could not be established with a third mooring
Secondary		
4. Deploy ARGO floats in support of the International Argo Float Program	Completed	
5. Nutrients and hydrography across the Northeast Channel and Gulf of Maine as part of NERACOOS Cooperative Agreement	Completed	
6. Carry out hydrographic, chemical and biological sampling at stations in The Gully MPA in support of MPA monitoring initiatives	Completed	
7. Carry out hydrographic, chemical and biological sampling at stations in the St. Anns Bank MPA in support of MPA monitoring initiatives	Completed	
8. Conduct hydrographic, chemical and biological sampling across the mouth of the Laurentian Channel in support of current modelling efforts	Completed	
9. Collect underway and CTD water samples at specified locations and depths to fulfil the regional component of an Aquatic Climate Change Adaptation Services Program (ACCASP) initiative investigating the delineation of ocean acidification and calcium carbonate saturation state of the Atlantic zone	Completed	Objective completed but with several data gaps due to science seawater pump failure
10. Bird and marine mammal observations as part of ECCC-CWS Eastern Canada Seabirds at Sea observation program	Completed	

 Table 2. (continued)

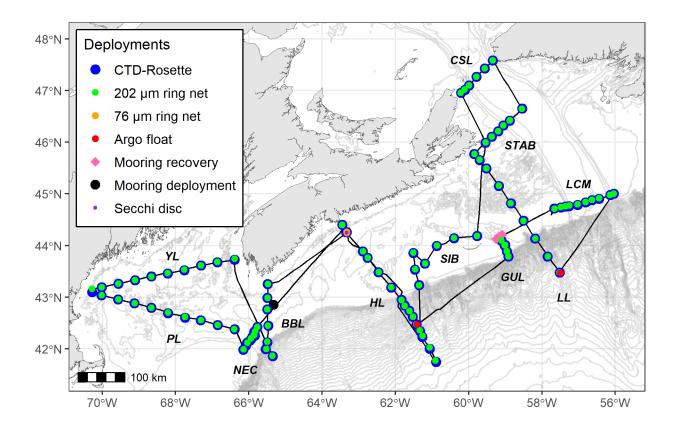

Objective	Status	Comment
Secondary cont.		
11. Collect high-resolution imagery of phytoplankton species while underway using an Imaging Flow Cytobot (IFCB) in collaboration with the Woods Hole Oceanographic Institution	Completed	
12. Collect water samples for the Bertrand lab at Dalhousie University to evaluate microbial protein and metabolites from the Scotian Shelf to better understand phytoplankton growth, phytoplankton bacterial interactions, and the role of cobalamin and other B-vitamins in phytoplankton community composition and productivity	Completed	
13. Collect water samples for the LaRoche lab at Dalhousie University from strategic locations and depths to support microbial community analyses via metabarcoding and metagenomics	Completed	
14. Collect water samples for the Buchwald lab at Dalhousie University from strategic locations and depths to measure nitrate isotopes (d15N and d18O) to interpret changes in nutrient uptake and supply on the Scotian Shelf	Completed	
Added during mission		
15. Collect water samples around Sable Island to evaluate the potential impact of grey seal fertilization on biological activities around the island in support of DFO Marine Spatial Planning and Marine Conservation Targets initiatives (Contact: Emmanuel.Devred@dfo-mpo.gc.ca).	Completed	This project involved the re-sampling of seven stations first sampled during the 2022 spring AZMP mission (AT4802)
16. Collect water samples around Sable Island to evaluate whether grey seals contribute to vitamin fertilization in its surrounding waters (Contact Erin.Bertrand@dal.ca)	Completed	
17. Occupation of the extended Halifax Line in support of DFO's Atlantic Zone Off-Shelf Monitoring Program (AZOMP; Contact: Marc.Ringuette@dfo-mpo.gc.ca)	Partially completed	Station HL_12 could not be occupied as planned due to time constraints and potential weather impacts

 Table 2. (continued)

Objective	Status	Comment
Added cont.		
18. Collect surface water samples at high-frequency AZMP station Halifax 2 in support of a Dalhousie University experiment to evaluate if cobalamin is a co-limiting nutrient during the spring season (Contact: Erin.Bertrand@dal.ca)	Completed	

3 Summary of Operations

Figure 1 and Table 3 provide an overview of operations conducted on the 2025 spring AZMP mission (EN728). A summary of various issues encountered during operations is provided in the 'Comments' field. A total of 220 gear operations (events) were conducted at 110 unique stations. The order of operations was influenced by use of the provisional 'cruisePlanning' R package (Layton, C. cruisePlanning: Oceanographic Cruise Planning, Version 0.1.0). This package generates a full mission itinerary based on the station locations and operational time, and the transit distance and speed between them. The package was developed as a tool to help chief scientists evaluate and select mission scenarios that result in maximum use of the allocated vessel time. Mission scenarios were routinely updated and re-generated throughout the mission and were used to make decisions on the order of stations and their activities. A conservative transit speed of 10 knots was used for between-station transits.

Figure 1. Stations and gear deployments conducting during the 2025 spring AZMP mission (EN728). Multiple operations at single stations may not be fully reflected in the map due to overlapping labels. AZMP sections are labelled in bold italic font, where YL = Yarmouth Line, PL = Portsmouth Line, NEC = Northeast Channel, BBL = Browns Bank Line, HL = Halifax Line, SIB = Sable Island Bank, GUL = The Gully, LL = Louisbourg Line, LCM = Laurentian Channel Mouth, STAB = St. Anns Bank, and CSL = Cabot Strait Line.

Table 3. Operations conducted at each station during the 2025 spring AZMP mission (EN728), ordered sequentially by Event number. Event coordinates (in decimal degrees - DD) reflect the ship's position at the time of deployment, as recorded using the ELOG meta-data logger. Mean depth (m) is calculated as the average water depth recorded by the ship's echosounder at the time each action was recorded for each station. Comments are associated with the 'action' on which they were entered for each event: Aborted (failed event), Deployed (gear deployment), Bottom (gear at the bottom), and Recovered (gear recovery). Note that multiple comments/actions can be present for a single event.

Event	Station	Gear	Start Lat. (DD)	Start Lon. (DD)	Date	Mean Depth (m)	Duration	Comments
1	HL_02	CTD/Rosette	44.2565	-63.3269	2025-03-29	159	00:44:48	
2	HL_02	202 μm net	44.2483	-63.3313	2025-03-29	162	00:12:40	
3	HL_02	76 µm net	44.2460	-63.3315	2025-03-29	159	00:10:51	
4	HL_02	Secchi Disc	44.2437	-63.3318	2025-03-29	158	00:02:34	
5	BBL_01	202 μm net	43.2512	-65.4788	2025-03-30	64	00:08:52	
6	BBL_01	CTD/Rosette	43.2538	-65.4830	2025-03-30	63	00:23:32	
7	BBL_02	202 μm net	42.9885	-65.4849	2025-03-30	119	00:09:07	
8	BBL_02	CTD/Rosette	42.9883	-65.4993	2025-03-30	116	00:24:03	Recovered: 0.5 Nm south of nominal station - fishing gear on station
9	ROBP	Mooring Deployment	42.8500	-65.3177	2025-03-30	148	00:28:25	In Water: CAPSULE IN WATER Other: BUBS AND ANCHOR DEPLOYED
10	BBL_03	202 μm net	42.7615	-65.4919	2025-03-30	107	00:35:25	Recovered: Submitted late
11	BBL_03	CTD/Rosette	42.7639	-65.4936	2025-03-30	107	00:33:03	
12	BBL_04	202 μm net	42.4480	-65.4772	2025-03-30	105	00:07:34	
13	BBL_04	CTD/Rosette	42.4463	-65.4713	2025-03-30	105	00:29:08	
14	BBL_05	202 μm net	42.1327	-65.4959	2025-03-30	188	00:11:49	Recovered: Poor wire angle. Could not remedy due to strong currents.
15	BBL_05	CTD/Rosette	42.1243	-65.4937	2025-03-30	240	00:34:09	Bottom: Submitted late - actual bottom time 2037
16	BBL_06	202 μm net	41.9951	-65.5194	2025-03-30	1114	01:04:08	
17	BBL_06	CTD/Rosette	41.9954	-65.5422	2025-03-30	1049	01:17:17	
18	BBL_07	202 μm net	41.8627	-65.3523	2025-03-31	1869	01:12:02	

Table 3. (continued)

Event	Station	Gear	Start Lat. (DD)	Start Lon. (DD)	Date	Mean Depth (m)	Duration	Comments
19	BBL_07	CTD/Rosette	41.8552	-65.3461	2025-03-31	1907	01:45:24	
20	YL_01	202 μm net	43.7423	-66.3904	2025-03-31	76	00:05:45	
21	YL_01	CTD/Rosette	43.7266	-66.3868	2025-03-31	68	00:18:03	
22	YL_02	202 μm net	43.6780	-66.8568	2025-03-31	128	00:09:42	Bottom: bottom submitted late
23	YL_02	CTD/Rosette	43.6738	-66.8568	2025-03-31	126	00:29:16	
24	YL_03	202 μm net	43.6108	-67.3052	2025-04-01	315	00:06:25	Bottom: Crossbow slid partly down - net paused twice 1m below surface during recovery
25	YL_03	CTD/Rosette	43.6105	-67.3085	2025-04-01	221	00:37:56	
26	YL_04	202 μm net	43.5314	-67.7548	2025-04-01	332	00:28:45	Recovered: ring scraped ship on recovery
27	YL_04	CTD/Rosette	43.5218	-67.7551	2025-04-01	245	00:33:16	
28	YL_05	202 μm net	43.4652	-68.2144	2025-04-01	192	00:16:03	Aborted: Hit bottom. Aborted
29	YL_05	202 μm net	43.4622	-68.2155	2025-04-01	186	00:11:39	
30	YL_05	CTD/Rosette	43.4550	-68.2171	2025-04-01	189	00:31:01	Recovered: sounder jumped between 192 and 182 - 182 true bottom depth
31	YL_06	202 μm net	43.3951	-68.6547	2025-04-01	149	00:10:41	
32	YL_06	CTD/Rosette	43.4025	-68.6606	2025-04-01	152	00:27:58	
33	YL_07	202 μm net	43.3285	-69.1085	2025-04-01	161	00:05:53	
34 35	YL_07	CTD/Rosette	43.3286	-69.1049	2025-04-01 2025-04-01	153 152	00:29:49	
33	YL_08	202 μm net	43.2604	-69.5569	2025-04-01	152	00:09:24	Recovered: misfire on
36	YL_08	CTD/Rosette	43.2610	-69.5623	2025-04-01	160	00:27:36	bottle 6 sample ID 514256
37	YL_09	202 μm net	43.1903	-70.0096	2025-04-02	108	00:06:52	
38	YL_09	CTD/Rosette	43.1903	-70.0120	2025-04-02	86	00:24:01	Recovered: bottle 6 misfired sample ID 514268

 Table 3. (continued)

Event	Station	Gear	Start Lat. (DD)	Start Lon. (DD)	Date	Mean Depth (m)	Duration	Comments
39	YL_10	202 μm net	43.1578	-70.2775	2025-04-02	125	00:08:27	Recovered: twist above cod end
40	YL_10	CTD/Rosette	43.0993	-70.2791	2025-04-02	128	01:44:43	Recovered: Submitted late - actual recovery time 0408 utc
41	PL 01	202 μm net	43.0344	-70.0104	2025-04-02	142	00:14:55	
42	PL_01	CTD/Rosette	43.0364	-70.0219	2025-04-02	128	00:26:47	Recovered: Winkler 10m sample mis-labelled and take from surface bottle (514297; should have been 514296). Kept the sample as by the time we realized the 10m bottle had been open/exposed to atmosphere for too long to re-do the sample.
43	PL_02	202 μm net	42.9549	-69.5630	2025-04-02	166	00:09:21	
44	PL_02	CTD/Rosette	42.9540	-69.5662	2025-04-02	173	00:26:33	
45	PL_03	202 μm net	42.8782	-69.1107	2025-04-02	180	00:19:29	
46	PL_03	CTD/Rosette	42.8811	-69.1191	2025-04-02	178	00:30:30	
47	PL_04	202 μm net	42.7902	-68.6568	2025-04-02	204	00:21:16	
48	PL_04	CTD/Rosette	42.7921	-68.6624	2025-04-02	205	00:34:20	Recovered: conductivity spike at ~50m during bottle fire on the upcast - particle passed through pump and ejected on remaining upcast
49	PL_05	202 μm net	42.6975	-68.2031	2025-04-02	188	00:11:45	
50	PL_05	CTD/Rosette	42.6896	-68.2020	2025-04-02	184	00:29:32	

 Table 3. (continued)

Event	Station	Gear	Start Lat. (DD)	Start Lon. (DD)	Date	Mean Depth (m)	Duration	Comments
								Aborted: crossbow slid
51	PL_06	202 μm net	42.6212	-67.7446	2025-04-02	194	00:11:54	down - sample kept for teaching only
53	PL_06	CTD/Rosette	42.6031	-67.7399	2025-04-03	203	00:35:47	
52	PL_06	202 μm net	42.6119	-67.7381	2025-04-03	199	00:00:00	
54	PL_07	202 μm net	42.5528	-67.3065	2025-04-03	299	00:20:24	
55	PL_07	CTD/Rosette	42.5528	-67.3153	2025-04-03	301	00:40:14	
56	PL_08	202 μm net	42.4585	-66.8502	2025-04-03	330	00:23:57	
57	PL_08	CTD/Rosette	42.4585	-66.8490	2025-04-03	334	00:38:07	
58	PL_09	202 μm net	42.3782	-66.3973	2025-04-03	269	00:16:19	
59	PL_09	CTD/Rosette	42.3786	-66.3865	2025-04-03	263	00:36:22	
60	NEC_10	202 μm net	41.9832	-66.1453	2025-04-03	94	00:07:28	
61	NEC_10	CTD/Rosette	41.9801	-66.1489	2025-04-03	93	00:27:27	
62	NEC_09	CTD/Rosette	42.0625	-66.0845	2025-04-03	98	00:27:24	
63	NEC_08	202 μm net	42.1164	-66.0405	2025-04-03	202	00:07:26	Recovered: time should be 1701200. hit early.
64	NEC_08	CTD/Rosette	42.1158	-66.0424	2025-04-03	207	00:36:04	·
65	NEC_07	CTD/Rosette	42.1618	-65.9698	2025-04-03	226	00:32:04	
66	NEC_06	202 μm net	42.1962	-65.9373	2025-04-03	227	00:13:42	
67	NEC_06	CTD/Rosette	42.1921	-65.9281	2025-04-03	230	00:31:23	
68	NEC_05	CTD/Rosette	42.2306	-65.9017	2025-04-03	239	00:30:10	
69	NEC_04	202 μm net	42.2640	-65.8647	2025-04-03	228	00:22:26	Aborted: crossbow slid down
70	NEC_04	202 μm net	42.2599	-65.8563	2025-04-03	227	00:17:17	
71	NEC_04	CTD/Rosette	42.2504	-65.8347	2025-04-04	227	00:00:00	
72	NEC_03	CTD/Rosette	42.2912	-65.8436	2025-04-04	217	00:38:10	
73	NEC_02	202 μm net	42.3307	-65.8302	2025-04-04	215	00:27:16	
74	NEC_02	CTD/Rosette	42.3259	-65.8521	2025-04-04	209	00:38:32	
75	NEC_01	202 μm net	42.4219	-65.7634	2025-04-04	105	00:27:22	

 Table 3. (continued)

Event	Station	Gear	Start Lat. (DD)	Start Lon. (DD)	Date	Mean Depth (m)	Duration	Comments
76	NEC_01	CTD/Rosette	42.4232	-65.7687	2025-04-04	104	00:26:03	Recovered: misfire on bottle 7 sample ID 514559 - this was a second 40m bottle for Dal (Bertrand) so we were conservative with water in 514558 and all samples for both DFO and Dal were able to be taken
77	HL_01	202 μm net	44.4007	-63.4495	2025-04-04	88	00:03:54	Aborted: cap fell off cod end - sample lost
78	HL_01	CTD/Rosette	44.3997	-63.4532	2025-04-04	88	00:26:48	
79	HL_01	202 μm net	44.3938	-63.4490	2025-04-04	87	00:17:02	
80	HL_02	202 μm net	44.2654	-63.3243	2025-04-05	136	00:10:28	
81	HL_02	76 µm net	44.2631	-63.3301	2025-04-05	166	00:10:12	
82	HL_02	CTD/Rosette	44.2577	-63.3488	2025-04-05	161	00:32:00	
83	HL_03	202 μm net	43.8839	-62.8802	2025-04-05	271	00:19:17	
84	HL_03	CTD/Rosette	43.8857	-62.8928	2025-04-05	271	00:37:45	
85	HL_03.3	202 μm net	43.7634	-62.7525	2025-04-05	224	00:13:06	
86	HL_03.3	CTD/Rosette	43.7644	-62.7566	2025-04-05	212	00:30:50	
87	HL_04	202 μm net	43.4793	-62.4546	2025-04-05	85	00:09:29	
88	HL_04	CTD/Rosette	43.4797	-62.4644	2025-04-05	86	00:24:44	
89	HL_05	202 μm net	43.1877	-62.1108	2025-04-05	103	00:40:46	Deployed: hit deploy early by accident Recovered: Recovery hit late
90	HL_05	CTD/Rosette	43.1872	-62.1098	2025-04-05	103	00:17:18	Deployed: submitted late - actual deploy time 153130
91	HL_05.5	202 μm net	42.9421	-61.8341	2025-04-05	395	00:25:52	Deployed: Sounding closer to 437 m
92	HL_05.5	CTD/Rosette	42.9474	-61.8367	2025-04-05	420	00:35:54	
93	HL_06	202 μm net	42.8331	-61.7427	2025-04-05	1045	00:55:46	

Table 3. (continued)

Event	Station	Gear	Start Lat. (DD)	Start Lon. (DD)	Date	Mean Depth (m)	Duration	Comments
94	HL_06	CTD/Rosette	42.8383	-61.7498	2025-04-05	1063	01:11:54	Recovered: misfire on bottle 17 sample ID 541694 - this was the first of two 20m bottle so we were able to take from bottle 18 sample ID 541695 with careful water use to ensure all DFO and Dal samples could be taken
95	HL_06.3	202 μm net	42.7339	-61.6146	2025-04-06	1691	00:58:51	
96	HL_06.3	CTD/Rosette	42.7343	-61.6215	2025-04-06	1687	01:32:30	
97	HL_06.7	202 μm net	42.6189	-61.5222	2025-04-06	2312	00:55:09	
98	HL_06.7	CTD/Rosette	42.6213	-61.5231	2025-04-06	2305	01:55:14	
99	HL_07	202 μm net	42.4713	-61.4318	2025-04-06	2760	01:13:58	
100	HL_07	CTD/Rosette	42.4707	-61.4220	2025-04-06	2818	02:21:53	Bottom: submitted late - actual bottom time 1015
101	HL_07	Argo float	42.4705	-61.4104	2025-04-06	2852	00:00:39	
102	GUL_04	202 μm net	43.7845	-58.9101	2025-04-07	2074	01:03:59	
103	GUL_04	CTD/Rosette	43.7847	-58.9155	2025-04-07	2217	01:39:22	Recovered: Sounding was variable - true bottom ~2055
104	G01	Mooring Recovery	44.1213	-59.2521	2025-04-07		00:16:38	
105	G02	Mooring Recovery	44.1270	-59.2423	2025-04-07		00:51:31	Aborted: Release confirmed but mooring did not release. Depth unchanged and tilt ranging between 56-58 degrees

Table 3. (continued)

Event	Station	Gear	Start Lat. (DD)	Start Lon. (DD)	Date	Mean Depth (m)	Duration	Comments
106	G03	Mooring Recovery	44.1341	-59.2290	2025-04-07		00:33:45	Aborted: Release confirmed but mooring did not release. Depth unchanged and tilt ranging between 68-79 degrees
107	G04	Mooring Recovery	44.1424	-59.2142	2025-04-07		00:21:48	
108	G05	Mooring Recovery	44.1487	-59.2022	2025-04-07		01:02:24	Aborted: Communications could not be established. Moved on.
109	G06	Mooring Recovery	44.1558	-59.1904	2025-04-07		00:27:11	
110	G07	Mooring Recovery	44.1621	-59.1772	2025-04-07		00:31:30	
111	G08	Mooring Recovery	44.1664	-59.1631	2025-04-07		00:14:15	
112	G09	Mooring Recovery	44.1735	-59.1482	2025-04-07		00:02:22	
113	G10	Mooring Recovery	44.1799	-59.1375	2025-04-07	200	00:18:14	
114	G11	Mooring Recovery	44.1869	-59.1243	2025-04-07		00:07:59	
115	G12	Mooring Recovery	44.1915	-59.1146	2025-04-07		00:15:39	Aborted: Communications not established with this mooring, even after repositioning. Moved on.
116	G13	Mooring Recovery	44.1990	-59.1038	2025-04-07		00:28:10	
117	G14	Mooring Recovery	44.2061	-59.0934	2025-04-07		00:35:12	
		•						

 Table 3. (continued)

Event	Station	Gear	Start Lat. (DD)	Start Lon. (DD)	Date	Mean Depth (m)	Duration	Comments
118	G15	Mooring Recovery	44.2104	-59.0780	2025-04-07		00:15:40	
119	GUL_01	202 μm net	44.0977	-59.1091	2025-04-07	566	00:42:22	
120	GUL_01	CTD/Rosette	44.0980	-59.1102	2025-04-08	648	00:29:20	
121	GUL_02	202 μm net	44.0105	-58.9999	2025-04-08	1181	01:18:34	
122	GUL_02	CTD/Rosette	44.0092	-59.0010	2025-04-08	1228	01:07:57	
123	GUL_03	202 μm net	43.8881	-58.9548	2025-04-08	1630	00:56:06	Aborted: crossbow slid down
124	GUL_03	202 μm net	43.8888	-58.9544	2025-04-08	1680	00:53:51	
125	GUL_03	CTD/Rosette	43.8884	-58.9534	2025-04-08	1573	01:27:32	
126	GULD_03	202 μm net	44.0022	-59.0196	2025-04-08	666	00:27:35	
127	GULD_03	CTD/Rosette	43.9999	-59.0204	2025-04-08	439	00:39:35	
128	G12	Mooring Recovery	44.1931	-59.1120	2025-04-08	245	00:16:08	Attempted Comms: Re-attempting comms On Deck: Recovered successfully
129	G05	Mooring Recovery	44.1491	-59.2035	2025-04-08	254	01:15:06	Aborted: Communications not established with this mooring or the vr4. Not recovered.
130	G03	Mooring Recovery	44.1354	-59.2289	2025-04-08		00:32:54	Attempted Comms: Re-attempting comms Release: Status armed Aborted: Re-released mooring but the depth did not change.
131	G02	Mooring Recovery	44.1285	-59.2426	2025-04-08		00:09:55	Aborted: Status opened, but depth did not change. Aborted.
132	LCM 01	202 µm net	44.7122	-57.6593	2025-04-09	35	00:01:33	

 Table 3. (continued)

Event	Station	Gear	Start Lat. (DD)	Start Lon. (DD)	Date	Mean Depth (m)	Duration	Comments
133	LCM_01	CTD/Rosette	44.7167	-57.6608	2025-04-09	35	00:13:44	
134	LCM_02	202 μm net	44.7402	-57.4810	2025-04-09	58	00:07:34	
135	LCM_02	CTD/Rosette	44.7378	-57.4826	2025-04-09	58	00:16:29	
136	LCM_03	202 μm net	44.7593	-57.3498	2025-04-09	68	00:05:35	
137	LCM_03	CTD/Rosette	44.7552	-57.3519	2025-04-09	75	00:22:25	Recovered: misfire on bottle 1 sample ID 514866 - took bottom oxygen; pCO2; TIC; salinity samples from 60m bottle (10m difference) sample ID 514867. Samples re-labelled appropriately.
138	LCM_04	202 μm net	44.7706	-57.2556	2025-04-10	390	00:10:13	Bottom: sounding closer to 399m Recovered: missed submit for Deployed - net depolyed approx 0054 utm
139	LCM_04	CTD/Rosette	44.7579	-57.2618	2025-04-10	386	00:41:02	Recovered: misfire on bottle 7 sample ID 514883 at 50m - taking pCO2; TIC samples from 40m bottle sample ID 514884. Relabeled appropriately.
140	LCM_05	202 μm net	44.8006	-57.0258	2025-04-10	435	00:25:04	
141	LCM_05	CTD/Rosette	44.7885	-57.0256	2025-04-10	434	00:41:46	
142	LCM_06	202 μm net	44.8399	-56.8094	2025-04-10	430	00:36:45	
143	LCM_06	CTD/Rosette	44.8369	-56.8074	2025-04-10	431	00:39:46	
144	LCM_07	202 μm net	44.8847	-56.6342	2025-04-10	422	00:24:18	Recovered: weight hit bottom
145	LCM_07	CTD/Rosette	44.8815	-56.6347	2025-04-10	417	01:00:14	
146	LCM_08	202 μm net	44.9138	-56.4393	2025-04-10	401	00:24:07	

Table 3. (continued)

Event	Station	Gear	Start Lat. (DD)	Start Lon. (DD)	Date	Mean Depth (m)	Duration	Comments
147	LCM_08	CTD/Rosette	44.9043	-56.4399	2025-04-10	400	00:38:49	Recovered: Bottle 7 misfire 514945 - no NUTS or CHL collected
148	LCM_09	202 μm net	44.9750	-56.1448	2025-04-10	234	00:14:36	
149	LCM_09	CTD/Rosette	44.9768	-56.1390	2025-04-10	213	00:35:39	Recovered: Bottle 7 misfire - 514958 - took samples from next bottle and shared with DAL (514959)
150	LCM_10	202 μm net	45.0035	-56.0386	2025-04-10	105	00:06:34	
151	LCM_10	CTD/Rosette	45.0001	-56.0360	2025-04-10	104	00:20:55	
152	LL_09	202 μm net	43.4746	-57.5246	2025-04-11	3717	01:09:51	
153	LL_09	CTD/Rosette	43.4739	-57.5169	2025-04-11	3730	02:39:22	
154	LL_09	Argo float	43.4719	-57.4984	2025-04-11	3734	00:05:36	
155	LL_08	202 μm net	43.7846	-57.8390	2025-04-11	2911	00:56:08	
156	LL_08	CTD/Rosette	43.7891	-57.8457	2025-04-11	2917	02:10:45	Recovered: 1 replicate of 515012 nutrients found on floor of special purpose lab room temp for ~6.5hrs. Marked with blue tape.
157	LL_07	202 μm net	44.1343	-58.1801	2025-04-11	889	00:41:44	
158	LL_07	CTD/Rosette	44.1327	-58.1879	2025-04-11	714	00:52:23	Recovered: Bottle 16 misfire
159	LL_06	202 μm net	44.4770	-58.5039	2025-04-12	125	00:01:48	
160	LL_06	CTD/Rosette	44.4790	-58.5020	2025-04-12	68	00:18:50	
161	LL_05	202 μm net	44.8170	-58.8499	2025-04-12	243	00:14:45	

 Table 3. (continued)

Event	Station	Gear	Start Lat. (DD)	Start Lon. (DD)	Date	Mean Depth (m)	Duration	Comments
162	LL_05	CTD/Rosette	44.8161	-58.8468	2025-04-12	249	00:31:46	Bottom: flushed pumped sensors (CTD; DO) with triton between LL_06 and LL_05 - seems to have reduced noise in DO signal and reduced T1-T2 (better temperature could be reason for better DO).
163	LL_04	202 μm net	45.1568	-59.1763	2025-04-12	97	00:03:56	Deployed: deployed submitted late
164	LL_04	CTD/Rosette	45.1540	-59.1767	2025-04-12	107	00:24:11	
165	LL_03	202 μm net	45.4923	-59.5161	2025-04-12	149	00:09:02	
166	LL_03	CTD/Rosette	45.4938	-59.5166	2025-04-12	131	00:25:33	
167	LL_02	202 μm net	45.6580	-59.7017	2025-04-12	155	00:09:28	
168	LL_02	CTD/Rosette	45.6556	-59.7040	2025-04-12	144	00:26:11	
169	LL_01	202 μm net	45.7735	-59.8408	2025-04-12	100	00:07:21	
170	LL_01	CTD/Rosette	45.7755	-59.8457	2025-04-12	101	00:23:25	
171	CSL_01	202 μm net	46.9589	-60.2150	2025-04-13	83	00:07:20	
172	CSL_01	CTD/Rosette	46.9591	-60.2109	2025-04-13	83	00:22:53	
173	CSL_02	202 μm net	47.0230	-60.1135	2025-04-13	154	00:12:29	
174	CSL_02	CTD/Rosette	47.0166	-60.1064	2025-04-13	191	00:29:05	
175	CSL_03	202 μm net	47.0989	-59.9923	2025-04-13	323	00:19:35	Recovered: entered late since was deleted when the duplicate bottom entry was deleted
176	CSL_03	CTD/Rosette	47.0990	-59.9910	2025-04-13	336	00:38:52	
177	CSL_04	202 μm net	47.2698	-59.7850	2025-04-13	427	00:27:57	
178	CSL_04	CTD/Rosette	47.2677	-59.7866	2025-04-13	472	00:42:35	Recovered: TA/TIC sample 515173 missed and taken late (~30 mins after recovery?)

Table 3. (continued)

Event	Station	Gear	Start Lat. (DD)	Start Lon. (DD)	Date	Mean Depth (m)	Duration	Comments
179	CSL_05	202 μm net	47.4295	-59.5587	2025-04-13	479	00:26:32	
180	CSL_05	CTD/Rosette	47.4298	-59.5591	2025-04-13	481	00:41:29	
181	CSL_06	202 μm net	47.5838	-59.3404	2025-04-13	264	00:15:10	
182	CSL_06	CTD/Rosette	47.5831	-59.3400	2025-04-13	262	00:32:13	
183	STAB_06	202 μm net	46.6476	-58.5446	2025-04-13	423	00:23:58	
184	STAB_06	CTD/Rosette	46.6540	-58.5422	2025-04-13	422	00:44:51	
185	STAB_05	202 μm net	46.4181	-58.8807	2025-04-14	376	00:17:48	Aborted: winch wire rubbing on doghouse - paused too long at 200m
186	STAB_05	202 μm net	46.4253	-58.8739	2025-04-14	381	00:22:57	
187	STAB_05	CTD/Rosette	46.4168	-58.8811	2025-04-14	380	00:40:51	
188	STAB_04	202 μm net	46.3231	-59.0540	2025-04-14	271	00:19:19	
189	STAB_04	CTD/Rosette	46.3224	-59.0503	2025-04-14	215	00:31:26	
190	STAB_03	202 μm net	46.2156	-59.1940	2025-04-14	96	00:06:26	
191	STAB_03	CTD/Rosette	46.2143	-59.1929	2025-04-14	97	00:20:56	Recovered: raining while sampling - made effort to minimize rainwater in samples but likely not 100%.
192	STAB_02	202 μm net	46.1085	-59.3670	2025-04-14	76	00:04:44	
193	STAB_02	CTD/Rosette	46.1081	-59.3680	2025-04-14	66	00:17:59	
194	STAB_01	202 μm net	45.9982	-59.5357	2025-04-14	63	00:04:01	
195	STAB_01	CTD/Rosette	45.9922	-59.5395	2025-04-14	59	00:16:58	
196	SIB_11	202 μm net	44.1864	-59.7743	2025-04-14	175	00:11:13	Bottom: weight touched the bottom
197	SIB_11	CTD/Rosette	44.1837	-59.7748	2025-04-14	167	00:30:36	
198	SIB_10	202 μm net	44.1440	-60.3956	2025-04-15	146	00:12:58	
199	SIB_10	CTD/Rosette	44.1406	-60.3993	2025-04-15	129	00:27:40	
200	SIB_09	202 μm net	43.9947	-60.8649	2025-04-15	42	00:04:54	
201	SIB 09	CTD/Rosette	43.9916	-60.8718	2025-04-15	45	00:12:20	

Table 3. (continued)

Event	Station	Gear	Start Lat. (DD)	Start Lon. (DD)	Date	Mean Depth (m)	Duration	Comments
202	SIB_05	202 μm net	43.6527	-61.1900	2025-04-15	53	00:06:02	
203	SIB_05	CTD/Rosette	43.6507	-61.1931	2025-04-15	53	00:16:42	
204	SIB_04	202 μm net	43.8599	-61.5069	2025-04-15	52	00:04:52	
205	SIB_04	CTD/Rosette	43.8551	-61.5103	2025-04-15	52	00:15:58	
206	SIB_03	202 μm net	43.5383	-61.4578	2025-04-15	60	00:04:57	Deployed: 515374 missing from label stack
207	SIB_03	CTD/Rosette	43.5326	-61.4628	2025-04-15	63	00:16:44	
208	SIB_02	202 μm net	43.2304	-61.3533	2025-04-15	120	00:88:00	
209	SIB_02	CTD/Rosette	43.2310	-61.3527	2025-04-15	120	00:21:19	Recovered: Bottle 16 misfire and Bottle 12 misfire (closed but empty)
210	HL_08	202 μm net	42.3584	-61.3389	2025-04-16	3343	00:55:11	
211	HL_08	CTD/Rosette	42.3424	-61.3302	2025-04-16	3497	02:46:32	
212	HL_09	202 μm net	42.2467	-61.2567	2025-04-16	3767	00:53:10	
213	HL_09	CTD/Rosette	42.2262	-61.2664	2025-04-16	3787	02:52:01	
214	HL_10	202 μm net	42.0236	-61.0684	2025-04-16	4082	00:56:03	
215	HL_10	CTD/Rosette	41.9986	-61.0627	2025-04-16	4102	03:02:50	Recovered: Bottle 23 misfire - extra surface btl
216	HL_11	202 μm net	41.7700	-60.9069	2025-04-16	4437	00:57:54	Bottom: went deeper to remove bad wrap Recovered: Went deeper to remove bad wrap. No other chances to go this deep. Stopped on way up once to readjust spooling.
217	HL_11	CTD/Rosette	41.7414	-60.8922	2025-04-17	4454	00:00:00	, ,
218	HL_02	202 μm net	44.2576	-63.3257	2025-04-17	162	00:13:42	
219	HL_02	76 μm net	44.2552	-63.3293	2025-04-17	156	00:10:41	
220	HL_02	CTD/Rosette	44.2588	-63.3269	2025-04-18	165	00:29:58	

3.1 CTD-Rosette Operations

3.1.1 CTD-Rosette Configuration

A SeaBird Electronics (SBE) 24, 10-L bottle CTD-Rosette system provided by URI was used for the duration of the EN728 mission. The CTD was configured in a steel protective cage mounted horizontally in the rosette frame (Figure 2). Table 4 shows a list of installed sensors on the CTD package along with their model numbers, date of last calibration, and owner. The CTD package included dual SeaBird Electronics (SBE) temperature, conductivity, and dissolved oxygen sensors, and a single Biospherical photosynthetically active radiation (PAR) sensor (rated to 2000 m), a WET Labs C-Star transmissometer, and a Valeport altimeter sensor. Two additional sensors, pH (SBE 18) and CDOM (Seapoint SUVF), were supplied by DFO's Ocean Engineering and Technology Section (OETS) for installation and use on the CTD package during the mission.

A SBE Deep SUNA nitrate sensor was used to collect vertical profiles of nitrate and other optical parameters during the mission, representing the first Maritimes Region AZMP mission in which nitrate sensor data were collected. The sensor was mounted horizontally within the CTD protective cage, and was connected to its own SBE submersible battery pack (see Figure 2). The SUNA sensor was set up to log data internally (i.e., not in live mode), and required users to download and archive the data after each cast using its associated UCI software. While the Deep SUNA's depth rating is 2000 m, its corresponding battery pack was only rated to 1000 m. Consequently, both the sensor and battery pack were removed from the rosette on stations deeper than 1000 m.

3.1.2 CTD-Rosette Deployments

Deployment of the CTD-Rosette was done using the J-frame and Winch 1 located on the starboard deck of the vessel. SBE Seasave acquisition software was operated using a shipboard acquisition computer and SBE 11 deck unit situated in the Main Laboratory. Communication between the CTD computer operator and the winch operator was done via radio. For deployments, two science staff were situated on deck to secure the rosette frame using tag lines, while a URI technician gave the hand signals to the winch operator to raise, lower, and payout the CTD-Rosette. Once the CTD-Rosette was deployed over the side and the tag lines were removed, the CTD computer operator turned on the deck unit and guided the winch operator to lower the package to 10 m depth for a 3-minute soak period, which served to trigger the pumps to turn on and allowed the sensors to acclimate. After the soak period, the CTD-Rosette was raised to the surface, and then sent on its downcast to approximately 5 m from bottom. During periods of inclement weather or high swell, the CTD package was lowered to within 7 to 10 m from the seabed.

Prior to recovery, the CTD deck unit was powered off after the surface bottles were closed. CTD-Rosette recovery procedures involved the use of gaffs and tag lines to secure the rosette frame after it breached the surface. Once on deck, the CTD-Rosette was secured using ratchet straps, and sampling of its Niskin bottles was done outside on deck.

A total of 96 CTD casts were conducted during the EN728 mission, with no aborted casts. The CTD-Rosette worked very well throughout the mission, although several bottle misfires were noted

Figure 2. A) SeaBird (SBE) 24-bottle CTD-Rosette system situated on the starboard deck of the RV *Endeavor* during the 2025 spring AZMP mission (EN728). B) Configuration of the SBE 9plus CTD and associated sensors within its protective cage mounted horizontally in the bottle extension frame. C) Deep SUNA nitrate sensor and SBE submersible battery mounted horizontally in the bottle stand extension frame.

Table 4. List of sensors included on the CTD system used during the 2025 spring AZMP mission on board the RV *Endeavor* (EN728). Model number and date of last calibration is shown.

Sensor	Model	Output Parameter	QAT Output Variable Name	Serial No.	Calibration Date	Owner
Primary CTD deck unit CTD underwater unit	SBE 11plus SBE 9plus					URI URI
Primary temperature	SBE 3P	ITS-90 temperature, Celcius	t090C	4695	1/17/2024	URI
Primary conductivity	SBE 4C	Conductivity, S/m	c0S/m	618	1/23/2024	URI
Digiquartz pressure sensor	Paroscientific	dbar	prDM	444	3/21/2024	URI
Primary dissolved oxygen	SBE 43	Dissolved oxygen, ml/l	sbeox0	1648	8/9/2024	URI
Secondary temperature	SBE 3P	ITS-90 temperature, Celcius	t191C	4130	1/18/2024	URI
Secondary conductivity	SBE 4C	Conductivity, S/m	c1S/m	2822	1/23/2024	URI
Secondary dissolved oxygen	SBE 43	Dissolved oxygen, ml/l	sbeox1	4281	7/11/2024	URI
pH	SBE 18	,,	ph	1251	3/6/2025	DFO
Chlorophyll fluorometer	Wet Labs ECO AFL/FL	micro g/L	fISP	4028	12/18/2023	URI
CDOM fluorometer	Seapoint Fluorometer SUVF	micro g/L	flSPuv0	6225	3/7/2025	DFO
PAR/Log	Biospherical Licor Chelsea Sensor	micromoles photons/m2/s	par	70709	6/7/2023	URI
Nitrate	Deep SUNA	milligrams/L		NTR-2382	10/17/2024	DFO

 Table 4. (continued)

Sensor	Model	Output Parameter	QAT Output Variable Name	Serial No.	Calibration Date	Owner
Transmissometer	WET Labs C-Star	Beam attenuation (1/m), Beam transmission (%)	CStarAt0, CStarTr0	969DR	2/23/2024	URI
Altimeter	Valeport VA500	metres	altM	49898	3/30/2015	URI

(see Table 3). Bottles that consistently misfired were either removed from the carousel, re-positioned elsewhere, or had their trigger latch replaced (e.g., in the case of Niskin bottle # 7). See the Operational Considerations and Issues of Note section below for further details.

3.1.3 CTD Data Post-Processing

Once a CTD cast was completed, the raw CTD files (.hex, .hdr, .bl, and .xmlcon) were manually copied from the CTD acquisition computer to the ship's science network where they could be accessed from any networked computer on the vessel. From here, they were copied onto BIO's post-processing computer, where the CTD Data Acquisition and Processing System (CTDDAP, Beta version 6.1), an in-house wrapper application to facilitate downloading and processing of CTD data from various SBE instruments, was used to post-process the .hex files from each cast. This allowed for the creation of ODF (Ocean Data Format) files, BIO's in-house CTD file format, and other files necessary for DFO's archival procedures. The CTD data in each ODF file was binned into 0.5 dbar bins.

A preliminary R script was written to join the nitrate data from the SUNA sensor to the CTD data using time stamps. This required reprocessing the raw CTD files without bin averaging.

3.1.4 Water Sampling

Water samples were collected using 24, 10-L bottles installed on the rosette. The number of water samples collected from each station depended on station depth and other characteristics. At all stations, two bottles were collected at the surface in order to meet the water demands of all participants and laboratories. For all other depths, one bottle was collected. Standard AZMP depths (surface, 10, 20, 30, 40, 50, 60, 80, 100 m, and bottom) are consistently sampled at stations 100 m or less, while deeper bottles are typically collected at 500 m intervals (e.g., 1500, 2000 m). Water samples were processed according to standard AZMP protocols:

- nutrients, chlorophyll a, dissolved oxygen, and salinity: Mitchell et al. (2002);
- total inorganic carbon, total alkalinity, pCO₂, pH, and methane: Dickson et al. (2007);
- particulate organic carbon and nitrogen: https://www.nodc.noaa.gov/archive/arc0022/0001155/1.1/data/1-data/docs/common/proto-18.htm;
- coloured-dissolved organic matter (CDOM): Mannino et al. (2019);
- high-performance liquid chromatography (HPLC): Head and Harris (1992);
- phytoplankton absorption: Hoepffner and Sathyendranath (1992) & Hoepffner and Sathyendranath (1993); and
- flow cytometry: Li and Dickie (2001)

During occupation of AZMP high-frequency station HL_02 on the Halifax Line, integrated phytoplankton samples were collected by collating 50 mL of water from each of the 10 bottle depths sampled, and preserving the sample using 2% Lugol's preservative (Mitchell et al. 2002).

Sample management included the assignment of unique 6-digit 'sticky IDs' to each Niskin bottle and sample vial. These IDs allow for unique identification of samples across the entire Maritimes Region AZMP timeseries. The ID range used for samples collected from the CTD-Rosette was 514025 to 515530.

Table 5 shows the total number of samples collected for each parameter measured and evaluated by the AZMP from CTD-Rosette deployments at each station. Bottle samples collected for salinity determination were analyzed at sea using a DFO-owned Guildline Autosal 8410A Salinometer set up in the Special Purpose Laboratory. As the temperature seemed to fluctuate in this lab, salinity samples were analyzed with the door closed and air conditioning set to 23°C to promote a consistent temperature and high-quality measurements.

Dissolved oxygen samples were titrated and analyzed at sea after being stored in the fridge for several hours using a modified Winkler technique with automated electrical endpoint system. Chlorophyll samples were analyzed using a Turner Designs fluorometer after being stored for at least 24 hours in a -20°C freezer. Samples collected for all other parameters were either stored at room temperature, refrigerated, or frozen for subsequent analysis ashore.

3.1.5 Data Accessibility

Upon completion of this mission, the CTD data will undergo various quality control checks to correct metadata errors and/or erroneous CTD values (e.g., data spikes), and the primary and secondary conductivity and oxygen sensor data will be calibrated using bottle measurements following SeaBird's 'Computing Temperature & Conductivity Slope & Offset Correction Coefficients from Lab Calibration and Salinity Bottle Samples' <u>Application Note No. 31</u> (Scientific 2024a) and 'SBE 43 Dissolved Oxygen Sensor Calibration and Data Corrections' <u>Application Note No. 64-2</u> (Scientific 2024b); also described in Beazley et al. (2024)). These final calibrated files are available in .ODF format by request to <u>DFO.BIODataServices-BIOServicesdeDonnees.MPO@dfo-mpo.gc.ca</u>, or can be downloaded directly in netCDF or other common formats from the Canadian Integrated Ocean Observing System (CIOOS) <u>ERDDAP</u>.

Bottle measurements can be extracted from DFO's national repository for discrete bottle and plankton data, <u>BioChem</u>, or can be made available by request to <u>DFO.BIODataServices-BIOServicesdeDonnees.MPO@dfo-mpo.gc.ca</u>.

Table 5. Summary of water samples collected for each parameter sampled on the 2025 spring AZMP mission (EN728). Numbers represent the total number of samples per station, where O_2 = dissolved oxygen, pCO $_2$ = partial pressure of carbon dioxide, TIC/TA = total inorganic carbon and total alkalinity, NUTS = nutrients, SAL = salinity, CHL = chlorophyll, POC = particulate organic carbon, HPLC = high performance liquid chromatography, ABS = phytoplankton absorption, CDOM = coloured dissolved organic matter, and CYTO = flow cytometry.

Station	Event	02	pCO2	TIC/TA	NUTS	SAL	CHL	POC/ PON	HPLC	ABS	CDOM	СҮТО
HL_02	1	3	6	6	20	2	18	2	2	2	2	18
BBL_01	6	3	4	4	14	2	14	2	2	2	2	14
BBL_02	8	3	0	0	18	2	18	2	1	1	1	18
BBL_03	11	3	5	5	18	2	18	2	2	2	2	18
BBL_04	13	3	0	0	18	2	18	2	1	1	1	18
BBL_05	15	3	6	6	22	2	18	2	2	2	2	18
BBL_06	17	4	9	9	30	3	18	2	1	1	1	20
BBL_07	19	5	11	11	32	4	18	2	2	2	2	24
YL_01	21	3	5	5	16	2	16	2	1	1	1	16
YL_02	23	3	0	0	20	2	18	2	1	1	1	18
YL_03	25	3	7	7	22	2	18	2	1	1	1	18
YL_04	27	3	0	0	22	2	18	2	1	1	1	18
YL_05	30	3	7	7	22	2	18	2	1	1	1	18
YL_06	32	3	0	0	20	2	18	2	1	1	1	18
YL_07	34	3	6	6	20	2	18	2	1	1	1	18
YL_08	36	3	6	6	25	2	16	2	1	1	1	18
YL_09	38	3	0	0	21	2	14	2	1	1	1	0
YL_10	40	3	5	5	18	2	18	2	1	1	1	18
PL_01	42	3	5	5	20	2	18	2	1	1	1	0
PL_02	44	3	0	0	20	2	18	2	1	1	1	0
PL_03	46	3	7	7	22	2	18	2	1	1	1	0
PL_04	48	3	0	0	22	2	18	2	1	1	1	0
PL_05	50	3	6	6	20	2	18	2	1	1	1	0
PL_06	53	3	0	0	22	2	18	2	1	1	1	0
PL_07	55	4	8	8	24	3	18	2	1	1	1	0
PL_08	57	4	0	0	24	3	18	2	1	1	1	0
PL_09	59	4	7	7	24	3	18	2	1	1	1	0

 Table 5. (continued)

Station	Event	02	pCO2	TIC/TA	NUTS	SAL	CHL	POC/ PON	HPLC	ABS	CDOM	СҮТО
NEC_10	61	3	0	0	18	2	18	2	1	1	1	0
NEC_09	62	3	5	5	18	2	0	0	0	0	0	0
NEC_08	64	3	0	0	26	2	18	2	1	1	1	0
NEC_07	65	3	7	7	26	2	0	0	0	0	0	0
NEC_06	67	3	0	0	26	2	18	2	1	1	1	0
NEC_05	68	3	6	6	26	2	0	0	0	0	0	0
NEC_04	71	3	0	0	26	2	18	2	1	1	1	0
NEC_03	72	3	6	6	26	2	0	0	0	0	0	0
NEC_02	74	3	6	6	26	2	0	0	0	0	0	0
NEC_01	76	3	0	0	18	2	18	2	1	1	1	0
HL_01	78	3	5	5	16	2	16	2	1	1	1	14
HL_02	82	3	6	6	20	2	18	2	2	2	2	18
HL_03	84	3	7	7	22	2	18	2	1	1	1	18
HL_03.3	86	3	0	0	20	2	18	2	2	2	2	0
HL_04	88	3	5	5	16	2	16	2	1	1	1	14
HL_05	90	3	5	5	18	2	18	2	2	2	2	18
HL_05.5	92	4	7	7	22	3	18	2	1	1	1	0
HL_06	94	9	11	11	30	8	18	2	2	2	2	20
HL_06.3	96	6	0	0	32	5	18	2	1	1	1	0
HL_06.7	98	12	0	0	34	11	18	2	1	1	1	0
HL_07	100	12	13	13	34	11	18	2	2	2	2	20
GUL_04	103	4	6	6	28	3	19	2	1	1	1	18
GUL_01	120	4	1	1	24	3	18	2	1	1	1	18
GUL_02	122	4	1	1	26	3	18	2	1	1	1	18
GUL_03	125	4	2	2	28	3	18	2	1	1	1	18
GULD_03	127	4	1	1	22	3	18	2	1	1	1	0
LCM_01	133	3	3	3	8	2	8	2	1	1	1	0
LCM_02	135	3	0	0	12	2	12	2	1	1	1	0
LCM_03	135	3	2	2	14	2	14	2	2	2	2	0
LCM_04	139	3	6	6	20	2	16	2	1	1	1	0
LCM_05	141	3	6	6	22	2	18	2	2	2	2	0

 Table 5. (continued)

Station	Event	02	pCO2	TIC/TA	NUTS	SAL	CHL	POC/ PON	HPLC	ABS	CDOM	СҮТО
LCM_06	143	3	0	0	22	2	18	2	1	1	1	0
LCM_07	145	4	5	5	22	2	18	2	2	2	2	0
LCM_08	147	4	0	0	22	2	18	2	1	1	1	0
LCM 09	149	3	5	5	20	2	18	2	2	2	2	0
LCM_10	151	3	4	4	18	2	17	2	1	1	1	0
LL_09	153	5	12	12	34	4	18	2	2	2	2	20
LL_08	157	4	10	10	32	4	18	2	1	1	1	0
LL_07	158	4	7	7	26	3	18	2	2	2	2	18
LL_06	160	3	0	0	14	2	14	2	1	1	1	14
LL_05	162	3	7	7	20	2	18	2	2	2	2	18
LL_04	164	3	7	7	18	2	16	2	1	1	1	17
LL_03	166	3	7	7	20	2	18	2	2	2	2	18
LL_02	168	3	7	7	20	2	18	2	1	1	1	18
LL_01	170	3	6	6	18	2	18	2	2	2	2	18
CSL_01	172	3	6	6	16	2	16	2	2	2	2	16
CSL_02	174	3	8	8	22	2	18	2	1	1	1	18
CSL_03	176	4	10	10	26	3	18	2	2	2	2	18
CSL_04	178	4	11	11	28	3	18	2	1	1	1	18
CSL_05	180	4	11	11	28	3	18	2	2	2	2	18
CSL_06	182	3	9	9	24	2	18	2	1	1	1	18
STAB_06	184	3	0	0	26	2	18	2	1	1	1	0
STAB_05	187	3	2	2	26	2	18	2	1	1	1	0
STAB_04	189	3	0	0	22	2	18	2	1	1	1	0
STAB_03	191	3	2	2	16	2	16	2	1	1	1	0
STAB_02	193	3	0	0	14	2	14	2	1	1	1	0
STAB_01	195	3	1	1	12	2	12	2	1	1	1	0
SIB_11	197	3	2	3	18	2	18	2	1	1	1	10
SIB_10	199	3	0	0	18	2	18	4	2	2	2	10
SIB_09	201	3	2	2	10	2	10	2	1	1	1	6
SIB_05	203	3	0	0	12	2	12	2	1	1	1	8
SIB_04	205	3	2	2	12	2	12	4	2	2	2	8

 Table 5. (continued)

Station	Event	02	pCO2	TIC/TA	NUTS	SAL	CHL	POC/ PON	HPLC	ABS	CDOM	СҮТО
SIB_03	207	3	0	0	14	2	14	2	1	1	1	8
SIB_02	209	3	0	2	16	2	18	4	2	2	2	10
HL_08	211	17	0	0	34	15	18	2	1	1	1	10
HL_09	213	18	0	0	35	17	18	2	1	1	1	10
HL_10	215	17	0	0	36	16	18	2	1	1	1	10
HL_11	217	78	0	0	48	17	18	2	1	1	1	10
HL_02	220	3	6	6	20	2	18	2	2	2	2	18

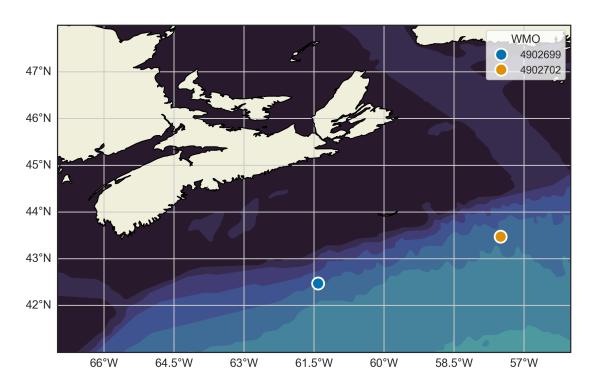
3.2 Vertical Ring Net Tows

At each station, a conical ring net with an aperture of 75 cm and rigged with 202 μ m mesh (filtering ratio of 1:5) was towed vertically from near-bottom (or to a maximum of 1000 m) to the surface to collect samples used by the AZMP to describe changes in mesozooplankton abundance and biomass across the Scotian Shelf. Ring net operations were conducted from the vessel's J-frame using the secondary three-conductor electromechanical (EM) cable and winch (termed 'Winch 2'). The diameter of this cable was 0.322" (~8 mm) and required crossbows compatible with a thicker-gauge wire. A 220 lb weight was shackled to the termination of this cable and was designed to keep the net straight in the water column during deployment.

Standard operating procedures were to deploy the ring net system at a speed of 30 m/min to within 10 m from the seabed based on total water column depth. The system was recovered at a rate of 50 m/min without slowing or stopping until the top of the net was out of the water, to prevent loss of its catch. Ring nets were equipped with a KC Denmark flow meter, which was used to record the start and end flow for each cast. The net was gently rinsed using a seawater hose, and the contents of the cod end were preserved in 4% buffered formaldehyde (10% formalin). Net operations at station HL_02 consisted of the standard (202 μ m) net deployment, and a 76 μ m net deployment preserved in formalin.

A total of 101 ring net operations were conducted at 90 unique stations during the mission (see Table 3), including a total of three 76 μm net deployments at station HL_02. An angle finder was used to assess wire angle during the net ascent, and typically ranged between 5 and 15°. The ring net tow at station YL_05 (Event 028) was aborted after the net hit the bottom. At stations PL_06 (Event 051), NEC_04 (Event 069), and GUL_03 (Event 123), ring net operations were aborted and re-deployed after the crossbow slid down the wire. This issue is described further in the Operational Considerations and Issues of Note section below. At station HL_01 (Event 077), the ring net was aborted after the end cap fell off the cod end, and the sample was lost. This cod end was quickly replaced after the net was washed down, and the net was redeployed. At station STAB_05 (Event 185), the net was aborted after the cable started to rub up against the winch house after the winch was adjusted. The winch was adjusted again and the net re-deployed successfully.

3.2.1 Data Accessibility


The wet biomass of large (> 10 mm) and small (< 10 mm) zooplankton (separate and combined), the dry weight of small zooplankton, and abundances of large zooplankton taxa and a subsample of small zooplankton taxa will be uploaded and available in BioChem upon completion of the analysis of samples in the laboratory, and can also be provided upon request to DFO.BIODataServices-BIOServicesdeDonnees.MPO@dfo-mpo.gc.ca.

3.3 Argo Floats

Two Argo floats were deployed from the RV *Endeavor* during the EN728 mission in support of the international <u>Argo program</u> (Wong et al. 2020). Both floats were NKE ARVOR core float models, which record temperature, conductivity, and depth. The first float was deployed at station HL_07 after completion of the CTD and ring net operations. The second float was deployed at station LL_09, also following CTD and ring net operations. The location of each deployment is shown in Figure 3, and the associated metadata provided in Table 6.

One hour prior to deployment, the floats were tested to confirm establishment of the float's GPS and iridium communications. Both floats were deployed by hand by two crew using a slip line from the aft starboard deck while the ship was transiting at a speeds between 1-2 kts. The floats should remain active for approximately 5 years, collecting vertical profiles from 2000 m to the surface every 10 days.

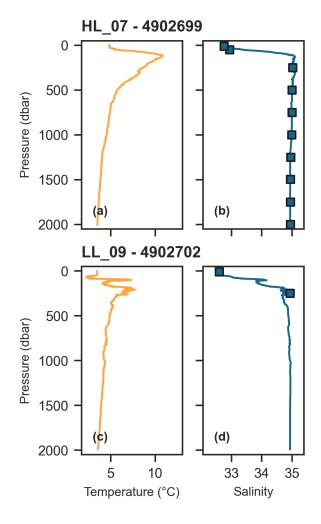

The first profile recorded by each float is shown in Figure 4. This profile was collected during ascent of the float, approximately 2 days after deployment. Salinity sensor data from the floats were compared with bottle salinity measurements collected on the CTD casts (up to a depth of 2000 m) from nearby stations HL07 and LL_09 (Figure 3), and were found to be comparable, although only a limited number of salinity samples are collected at station LL 09 relative to station HL 07.

Figure 3. Location of the Argo float deployments conducted during the 2025 spring AZMP survey (EN728).

Table 6. Metadata associated with the deployment of two Argo floats during the 2025 spring AZMP survey (EN728). The WMO and serial numbers (S/N) of each float are provided, along with the time of magnet removal and deployment (UTC), and associated date, event, station, and latitude and longitude (in decimal degrees) of deployment.

Station	Serial No.	WMO	Date	Event	Lat. (DD)	Lon. (DD)
HL_07	Al2600-24CA008	4902699	2025-04-06	101	42.4705	-61.4103
LL_09	Al2600-24CA011	4902702	2025-04-11	154	43.4719	-57.4984

Figure 4. Initial profile for Argo floats 4902699 and 4902702 deployed at stations HL_07 and LL_09 respectively, during the 2025 spring AZMP mission (EN728). Solid lines show the Argo profile and square markers on the salinity plots represent bottle salinity measurements collected from the CTD-Rosette casts at stations HL_07 and LL_09, and measured using a salinometer.

3.4 Flow-Through Systems

3.4.1 TSG system and associated sensors

Continuous surface measurements of temperature, conductivity, salinity, dissolved oxygen, pH, chlorophyll *a*, and coloured dissolved organic matter (CDOM) were collected via a portable flow-through system installed in the Wet Laboratory on the RV *Endeavor*. This system is operated and maintained by BIO's Ocean Engineering and Technology Section (OETS), and was configured with three different tanks that hold various sensors: a SBE 21 SeaCAT Thermosalinograph (TSG; tank 1), a SBE 18 pH sensor, Aanderaa optode dissolved oxygen sensor, a Seapoint UV CDOM and chlorophyll fluorometers sensors (tank 2), and a General Oceanics pCO₂ sensor (tank 3). A debubbler system was installed to reduce air flow through the tanks. This flow-through system was connected to the vessel's uncontaminated science seawater dispersed throughout the vessel via an impeller pump. The seawater intake for this pump was located near the bow of the vessel at 5 m below the sea surface. Temperature at the intake was recorded using an SBE 38 located approximately 12" from the intake.

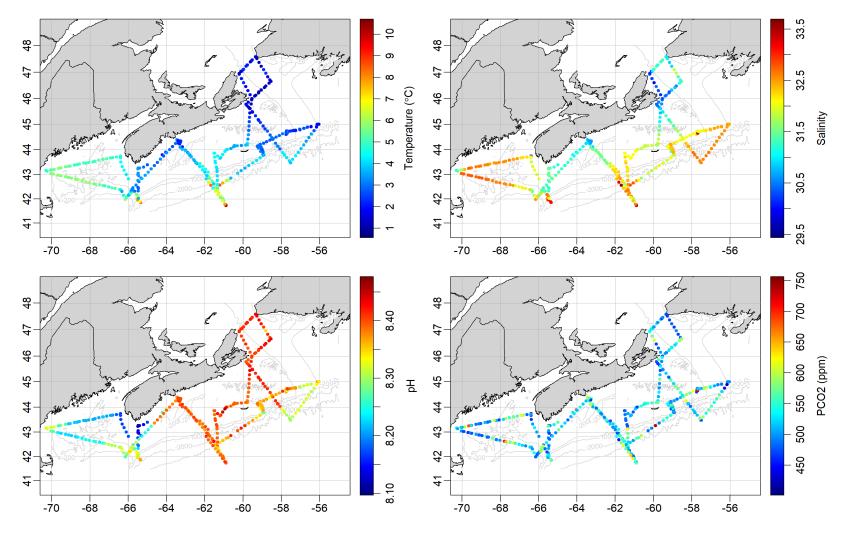
On April 6, it was discovered that the impeller pump had been experiencing sporadic shutdowns throughout the mission, which became more persistent. A decision was then made to switch the water source to a second science seawater system on the *Endeavor* that was modulated via a diaphragm pump. This conversion occurred on April 14. The intake temperature for the impeller pump continued to be fed into the flow-through system. While the intake depth for the diaphragm pump was also at 5 m depth, diaphragm pumps are known to produce less shear stress on phytoplankton cells compared to impeller pumps (Cetinić et al. 2016), potentially resulting in higher-quality optical measurements. However, the diaphragm pump appeared to create pulses in the flow and pressure of water through the flow-through system, potentially impacting other sensor outputs (e.g., dissolved oxygen). Future end users of the chlorophyll data collected on this mission should be aware of compatibility issues of the data collected with the impeller pump system versus the diaphragm pump system.

At approximately 08:12 UTC on Monday April 14, the impeller pump power source failed. This resulted in the loss of data from the intake temperature sensor to the system. Shortly thereafter, a decision was made to connect the temperature sensor located in the ship's transducer well, also located 5 m from the hull of the vessel, to the flow-through system via serial feed. This was used as the intake temperature source for the remainder of the EN728 mission.

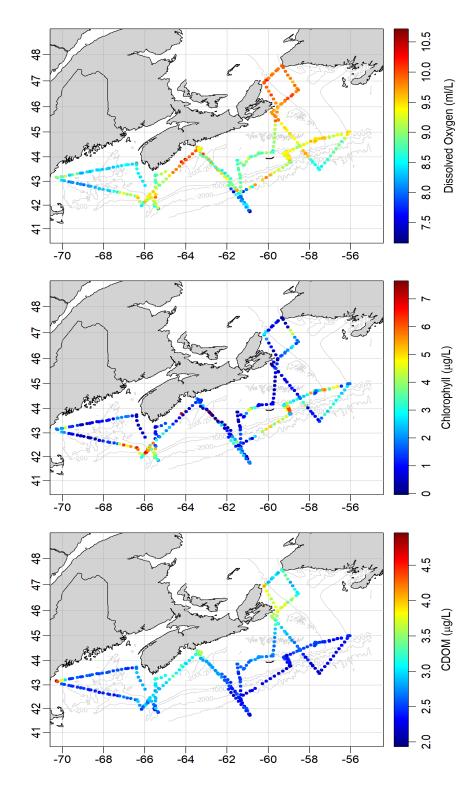
The RV *Endeavor* also has a shipboard flow-through system installed in the Wet Laboratory on board, which was active during the mission. This system is described further in the Shipboard Science Systems section below.

Daily underway system sampling Daily sampling of dissolved oxygen, chlorophyll, salinity, CDOM, and TIC/TA samples were collected from the outflow of the BIO flow-through system throughout the mission (see Table 7). Samples were collected daily at approximately noon, starting on March 30 and ending on April 17. Daily samples were assigned a unique sample ID for each day, which was recorded in the ELOG metadata logger. The sample ID range for daily underway samples collected during the mission was 514003 to 514021.

Table 7. Metadata associated with the collection of water samples from the underway system during the 2025 spring AZMP mission (EN728). Date, time (UTC), latitude and longitude (in decimal degrees) of the ship's position were recorded in ELOG at the time of sample entry, while temperature ($^{\circ}$ C), salinity, and pH were recorded from the thermosalinograph. 'X' and 'XX' indicate single and duplicate sampling, respectively. CM = coloured dissolved organic matter.


										Вс	ttle S	Sample	S	
Date	Time (UTC)	Lat. (DD)	Lon. (DD)	Temp	Sal	Sample ID	TSG Flow Rate (L/min)	pCO2 Flow Rate (L/min)	pCO2	TIC/ TA	Chl	Salts	02	СМ
2025-03-30	16:29:00	42.5351	-65.4862	2.75	31.23	514003	10.1	1.86	Χ	Χ	XX	Χ	Χ	Χ
2025-03-31	15:22:00	43.2516	-66.2608	4.47	32.05	514004	15.0	2.00	Χ	Χ	XX	Χ	Χ	Χ
2025-04-01	15:58:00	43.3825	-68.8018	4.88	32.58	514005	14.8	1.91	Χ	Χ	XX	Χ	Χ	Χ
2025-04-02	15:16:00	42.8400	-68.8990	5.54	32.72	514006	15.2	1.88	Χ	Χ	XX	Χ	Χ	Χ
2025-04-03	15:52:00	42.0631	-66.0843	4.95	32.15	514007	15.2	1.82	Χ	Χ	XX	Χ	Χ	Χ
2025-04-04	15:23:00	43.5395	-64.4049	2.79	31.22	514008	15.2	2.05	Χ	Χ	XX	Χ	Χ	Χ
2025-04-05	16:32:00	43.1467	-62.0617	4.45	32.37	514009	14.3	2.06	Χ	Χ	XX	Χ	Χ	Χ
2025-04-06	15:35:00	42.7105	-60.9526	6.06	32.40	514010	14.6	1.99	Χ	Χ	XX	Χ	Χ	Χ
2025-04-07	15:38:00	44.1566	-59.1874	3.35	32.05	514011	14.6	2.07	Χ	Χ	XX	Χ	Χ	Χ
2025-04-08	16:22:00	44.1328	-59.2316	2.96	32.13	514012	13.0	1.84	Χ	Χ	XX	Χ	Χ	Χ
2025-04-09	15:25:00	44.6158	-57.7419	2.44	32.13	514013	12.7	1.97	Χ	Χ	XX	Χ	Χ	Χ
2025-04-10	18:41:00	45.0008	-56.0294	1.75	32.51	514014	10.1	0.93	Χ	Χ	XX	Χ	Χ	Χ
2025-04-11	18:14:00	43.9202	-57.9609	4.00	32.60	514015	16.1	2.35	Χ	Χ	XX	Χ	Χ	Χ
2025-04-12	17:19:00	45.9048	-59.6683	1.45	30.41	514016	15.2	2.15	Χ	Χ	XX	Χ	Χ	Χ
2025-04-13	15:37:00	47.4254	-59.2054	1.03	30.96	514017	15.4	2.27	Χ	Χ	XX	Χ	Χ	Χ
2025-04-14	15:37:00	45.3385	-59.6573	2.35	31.08	514018	15.8	2.31	Χ	Χ	XX	Χ	Χ	Χ
2025-04-15	16:49:00	43.7269	-61.4914	4.59	32.23	514019	14.7	1.92	Χ	Χ	XX	Χ	Χ	Χ
2025-04-16	19:09:00	41.8939	-60.9807	5.64	31.76	519020	14.5	1.77	Χ	Χ	XX	Χ	Χ	Χ
2025-04-17	15:15:00	43.4533	-62.3011	4.49	31.91	519021	15.9	1.96	Χ	Χ	XX	Χ	Χ	Χ

Data management and sensor validation The Advanced Serial Data Logger software installed on the BIO flow-through computer system records the sensor data, flow rate, NMEA data, and pCO₂ RS-232 serial data directly into text (.csv) files produced daily. The frequency of measurements within each file type varies, with NMEA recordings occurring every second, TSG measurements every 5 seconds, and flow data approximately every second. A script was developed using R statistical software to collate the TSG and flow rate data with the corresponding positional data in the NMEA file. Measurements were interpolated in hourly bins and plotted to visualize spatial patterns and help validate the sensor outputs (see Figures 5 and 6 below). The optode calphase output is converted to dissolved oxygen concentration in ml/L whilst correcting for salinity (in the tank) using R.


3.4.2 Imaging Flow Cytobot

As part of a collaborative agreement with the Woods Hole Center for Oceans and Human Health (WHCOHH), an Imaging FlowCytobot (IFCB) was installed in the Special Purpose Laboratory prior to the vessel's departure from Narragansett. This system is designed to draw small seawater samples from its environment (or in this case, from the ship's science seawater system) every 23 minutes using a syringe pump, which then pushes a thin stream of the sampled water across a microscope objective. Cells and other particles are detected by an in-line laser immediately upstream of the objective. Detections trigger a precisely-timed flash lamp that illuminates the cell/particle just as it passes in front of the microscope objective. Images of cells are captured by a charged-coupled device (CCD) camera and stored in data files that are associated with each seawater sample. Raw data includes gray-scale images of each particle and associated measurements of laser scatter and fluorescence. This system requires a minimum flow rate of approximately 2 L/min, and the total volume sampled is 25 mL per hour.

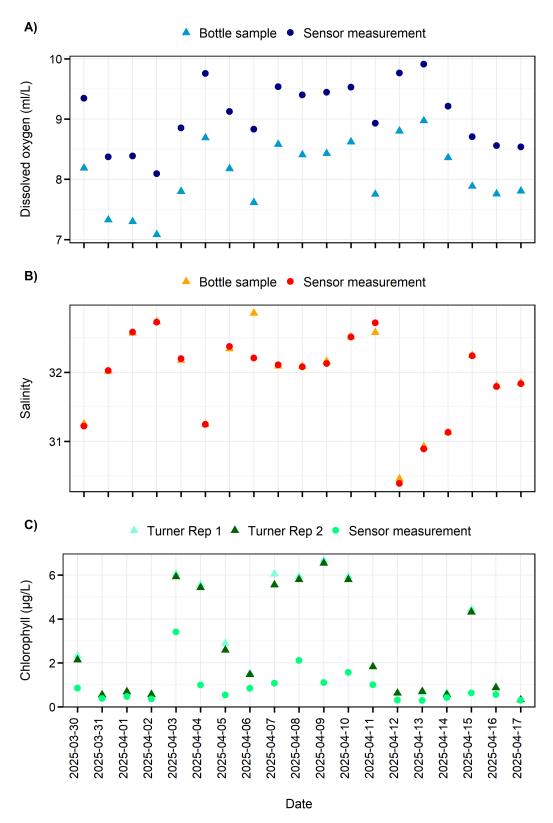
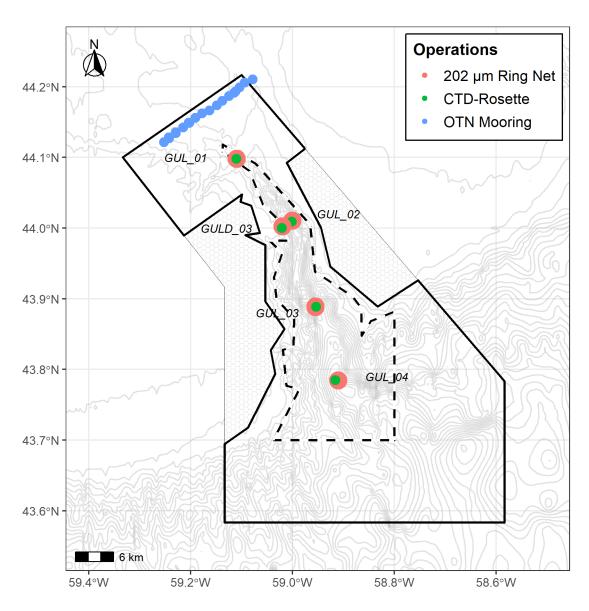

The collected images are accessible via an in-house IFCB <u>dashboard</u>. Due to connectivity issues, IFCB data were not collected while the vessel was sampling the Laurentian Channel Mouth line, but are otherwise available for the entire mission track.

Figure 5. Surface temperature (°C; top left), salinity (top right), pH (lower left), and the partial pressure of carbon dioxide (pCO₂; lower right) measured along the cruise track during the 2025 spring AZMP mission (EN728). Data are measured at variable intervals and presented as hourly interpolations.

Figure 6. Dissolved oxygen concentration (ml/L; top), chlorophyll fluorescence ($\mu g/L$; middle), and CDOM ($\mu g/L$; bottom) measured along the cruise track during the 2025 spring AZMP mission (EN728). Data are measured at variable intervals and presented as hourly interpolations.

Figure 7. Comparison between bottle samples and sensor measurements of A) dissolved oxygen, B) salinity and C) chlorophyll collected using BIO's portable flow-through system installed on the RV *Endeavor* during the 2025 spring AZMP survey.


3.5 Mooring Operations

Deployment of a single passive acoustic monitoring (PAM) mooring was conducted in Roseway Basin on the EN728 mission (station ROBP, Event 009). This mooring consisted of a large Stablemoor capsule floatation with an inserted JASCO Autonomous Multichannel Acoustic Recorder, battery pack, hydrophone, beacon. The mooring also included a SBE 37 microCAT connected to two BUB buoyancy packages via a kevlar rope, and dual Teledyne Benthos acoustic releases connected to a double train wheel anchor weighing 1240 lbs. The total length of the mooring assembly was 29 m, with an in-air weight of 1678 lbs (excluding the anchor). This mooring was deployed in the Roseway Basin North Atlantic Right Whale critical habitat zone at the request of DFO Research Scientist Angelia Vanderlaan, lead of DFO's North Atlantic Right Whale Research Unit, Maritimes Region, after it unexpectedly resurfaced in December 2024 due to a failed release. The mooring was deployed using the vessel's A-frame and a portable Tension Strain Equipment (TSE) mooring spooler provided by URI. The mooring will remain until its recovery in fall 2025.

An array of 15 acoustic receiver moorings situated at the head of the Gully MPA (see Figure 8) was planned for recovery during the EN728 mission as part of a joint project between DFO and the Ocean Tracking Network (OTN). These moorings were outfitted with acoustic releases and yellow flotation collars outfitted with Vemco VR4 receivers that sit several metres above the seabed that are designed to record nearby tagged species. The goal of this project was to understand how a hot spot of juvenile halibut northwest of the MPA utilize the area, providing key insights into their behavior and movement patterns.

A recovery procedure was outlined between the lead mooring technician on the mission (Adam Hartling), the Captain, and bosun. Recovery involved positioning the vessel approximately 150 m away from the mooring coordinates and establishing communications with the mooring using a Vemco VR100 deck unit and transducer deployed to 5-6 m below the sea surface. Once the mooring was released, the vessel positioned itself so that the mooring flotation was accessible from the starboard deck. Once the flotation was alongside and close enough to reach, a long gaff was used to hook a loop in the rope leading from the flotation to the release. A snap hook attached to a rope connected to the ship's knuckleboom crane was then used to secure the mooring and lift it out of the water and onto the starboard deck. Once the mooring and release were on board, they were cleaned of any biofouling material and stowed for the remainder of the mission.

Of the 15 moorings comprising the array, only 12 could be recovered. Most moorings (see Table 3) were recovered on Monday April 7, with the exception of the moorings at stations G02, G03, G05, and G12. Of these four moorings, communications could not be established with two (stations G05 and G12). At stations G02 and G03, communications were established, but neither mooring surfaced after release. A health status evaluation indicated that the depth of both moorings did not change after release. The tilt of each mooring release was high (56 to 79°) suggesting the releases were not vertical in the water column. The moorings that could not be recovered on April 7 were revisited on Tuesday April 8 to attempt recovery for a second time. Upon arrival at station G12, communications were established with the mooring almost immediately, and it was released and recovered successfully. However, communications could not be established with the mooring release at G05, and this mooring could not be recovered. The moorings at stations G02 and G03 were revisited and communications re-established, but their status remained unchanged. Release was re-attempted for both moorings but was not successful.

Figure 8. Location of Ocean Tracking Network acoustic receiver array partially recovered during the EN728 mission. Also shown are the boundaries and zones of The Gully Marine Protected Area, where the dashed line represents the boundary of Zone 1, the solid line Zone 2, and the hexagon pattern Zone 3. Also shown are the CTD-Rosette and ring net deployments at four AZMP stations.

3.6 Shipboard Science Systems

3.6.1 Vessel-Mounted Acoustic Doppler Current Profiler (VMADCP)

Ocean currents were continuously measured throughout the EN728 mission using a dual vessel-mounted Acoustic Doppler Current Profiler (ADCP) system consisting of a 300 kHz RDI Workhorse Mariner and 75 kHz Ocean Surveyor ADCP systems. The transducers for these systems were mounted at ~5 meters depth on the hull of the vessel. Data were processed on board in real time using the University of Hawaii's Data Acquisition System (UHDAS).

The 75 kHz ADCP reached ~500-900 m depth in good weather in its deep-profiling mode, while the 300 kHz system reached to ~90 m below the hull of the vessel. In bad weather, low scattering conditions, or some speed/heading/sea state conditions that entrain bubbles under the transducer, the range is less.

Data acquisition for the sonar and the requisite ancillary navigation streams occurs via the UHDAS software. An Ocean Surveyor is capable of running in either broadband mode (higher resolution at the expense of penetration) or narrowband mode (slightly deeper profiling but lower resolution). It is also capable of interweaving these pings. However, broadband mode was turned off during the EN728 mission and only narrowband mode was used. The ADCP system configuration in Table 8 remained consistent for the duration of the EN728 mission. Both ADCP systems were run continuously and simultaneously, except for when within the confines of the Gully MPA and when transiting across the boundaries of the Saint-Pierre et Miquelon Exclusive Economic Zone. Bottom tracking was turned on after departure for about half a day then remained off the remainder of the mission. A detailed digital log for the ADCPs was maintained by the URI marine technicians. This dataset was archived at the Bedford Institute of Oceanography via the BIO Data Services group.

Table 8. Configuration settings for the 75 and 300 kHz VMADCP units on the RV *Endeavor* for the 2025 spring AZMP mission (EN728).

ADCP	Start Day	End Day	Ping	No. Bins	Bin Size (m)	Blank Distance (m)
75 kHz	2025-03-29 12:53:00	2025-04-18 11:56:00	Narrow band	100	8	8
300 kHz	2025-03-29 12:53:00	2025-04-18 11:56:00	Water profile	35	4	4

3.6.2 Shipboard Flow-Through System

The RV *Endeavor* has uncontaminated science seawater that flowed into the vessel at ~ 5 metres depth into a seachest located in the engine room. This seawater was pumped via a non-metallic impeller pump past a SBE3S remote temperature sensor, through PVC piping and to outlets located in the Special Purpose and Wet Laboratories, and to the 01 deck. In the Wet Lab, the seawater flowed through a debubbler and was then split to a SBE21 TSG, SBE45 TSal, WET Labs WETStar chlorophyll fluorometer, ECO-Fluor fluorometer and the sink. The flowing water then drains overboard. This system also includes a surface PAR installed on the 01 deck of the vessel. Logging of these data was done using SBE Seasave software, and the resulting serial strings were routed to NOAA's Scientific Computer System (SCS). From there, the Cruise Observations Real-time Interface and Open Live Information eXchange (CORIOLIX) system, accessed through shipboard LAN, was used to generate various data plots to visualize and inspect the collected data in near real-time.

3.6.3 Echosounders

The RV *Endeavor* is equipped with 12 kHz single-beam echosounder that was used for depth estimation during CTD and ring net operations. The echosounder ASCII string depth values and other data were routed to SCS. The vessel was also equipped with a low frequency 3.5 kHz echosounder (CHIRP), which was not used during the mission.

3.6.4 Availability of Shipboard Data

ΑII shipboard environmental data collected during the EN728 mission were archived at BIO in the ODIS data server and are available request to by DFO.BIODataServices-BIOServicesdeDonnees.MPO@dfo-mpo.gc.ca, and will also be submitted by the RV Endeavor Marine Technical Services group to NSF-sponsored Rolling Deck to Repository R2R. R2R catalogs and submits the underway environmental sensor data to long-term public archives, including the NOAA National Centers for Environmental Information (NCEI).

4 Seabirds and Marine Mammal Observations

4.1 Background

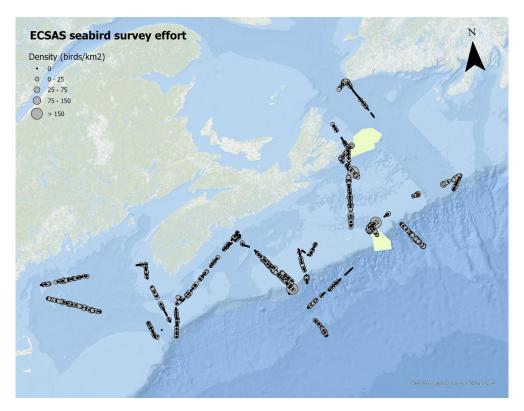
The east coast of Canada supports millions of breeding marine birds as well as migrants from the southern hemisphere and the eastern North Atlantic. In 2005, the Canadian Wildlife Service (CWS) of Environment Canada initiated the Eastern Canada Seabirds at Sea (ECSAS) program with the goal of identifying and minimizing the impacts of human activities on birds in the marine environment. Since that time, a scientifically rigorous protocol for collecting data at sea and a sophisticated geodatabase have been developed, relationships with various industries and DFO to support offshore seabird observers have been established, and over 300,000 km of ocean track have been surveyed by CWS-trained observers. These data are now being used to quantify seabird abundance and distribution at sea and identify and mitigate any threats. In addition, data are collected on marine mammals, sea turtles, sharks, and other marine organisms when they are observed.

4.2 Methods

Seabird surveys were conducted from the port side of the bridge of the RV *Endeavor* during the EN728 mission. Surveys were conducted while the ship was moving at speeds greater than 4 knots, looking forward and scanning a 90° arc to one side of the ship. All birds observed on the water within a 300 m-wide transect were recorded, and we used the snapshot approach for flying birds (intermittent sampling based on the speed of the ship) to avoid overestimating abundance of birds flying in and out of transect. Distance sampling methods were incorporated to address the variation in bird detectability. Marine mammal and other marine wildlife observations were also recorded, although surveys were not specifically designed to detect marine mammals. Details of the methods used can be found in the CWS standardized protocol for pelagic seabird surveys from moving platforms (Gjerdrum et al. 2012).

4.3 Results

A total of 1636.3 km of ocean was surveyed over 20 days. A total of 2469 marine birds were observed in transect (2786 in total) from 9 families (Table 9). Bird densities averaged 5.3 birds/km² (ranging from 0 – 449.3 birds/km²). The highest densities of birds (> 150 birds/km²) were observed at the shelf break on the Halifax Line, northeast of the Gully MPA, and the northwestern corner of Misaine Bank (Figure 9).


Sightings from the family Alcidae were the most abundant (53% of the observations), most of which were Dovekie and Murre. Neither of these species breed in the area, but do spend a significant amount of time there during the non-breeding season. Laridae were also common (34% of the observations), with Black-legged Kittiwake, Herring and Great Black-backed Gulls (Table 9) observed throughout the survey area. An additional 12 terrestrial birds were observed offshore, either migrating overseas or blown off course (Table 10). Only 26 marine mammals were observed during the surveys (Table 11).

4.4 The Gully and St. Ann's Bank MPAs

Surveys took place in The Gully MPA on April 12 and 14 (see Figure 9) where a total of 44 marine birds were observed (Table 12). Surveys in St. Ann's Bank MPA took place on April 7-8, where 172 marine birds were sighted (Table 13). No marine mammals were observed in either of the MPAs.

Table 9. List of marine bird species observed during surveys completed on the EN728 mission from March 29 to April 17, 2025.

Family	Common Name	Latin	Total No.	No. Obs. in Transect
Marine birds				
Gaviidae	Red-throated Loon	Gavia stellata	1	0
Procellariidae	Northern Fulmar	Fulmarus glacialis	53	53
	Sooty Shearwater	Ardenna grisea	24	23
	Unidentified Shearwaters	Puffinus or Calonectris or Ardenna	1	0
Hydrobatidae	Leach's Storm-Petrel	Hydrobates leucorhous	20	17
	Wilson's Storm Petrel	Oceanites oceanicus	2	2
	Unidentified Storm-Petrels	Hydrobatidae	2	2
Phalacrocoracidae	Double-crested Cormorant	Phalacrocorax auritus	9	9
	Unidentified Cormorants	Phalacrocorax	1	1
Sulidae	Northern Gannet	Morus bassanus	200	196
Anatidae	Common Eider	Somateria mollissima	27	25
	Black Scoter	Melanitta nigra	1	1
Scolopacidae	Unidentified Phalaropes	Phalaropus	2	2
Laridae	Unidentified Skuas	Stercorarius Skuas	20	20
	Black-legged Kittiwake	Rissa tridactyla	145	145
	Herring Gull	Larus argentatus	115	107
	Great Black-backed Gull	Larus marinus	107	106
	Ring-billed Gull	Larus delawarensis	85	83
	Iceland Gull	Larus glaucoides	5	5
	Glaucous Gull	Larus hyperboreus	3	3
	Unidentified Gulls	Larus	635	357
	Unidentified Terns	Sterna	19	15
Alcidae	Dovekie	Alle alle	509	507
	Common Murre	Uria aalge	66	63
	Thick-billed Murre	Uria lomvia	38	38
	Unidentified Murres	Uria	328	321
	Atlantic Puffin	Fratercula arctica	33	33
	Razorbill	Alca torda	12	12
	Black Guillemot	Cepphus grylle	4	4
Total	Unidentified Auks	Alcidae	319 2786	319 2469

Figure 9. Density of birds (all species combined) observed during surveys on the Scotian Shelf AZMP from March 29 to April 17, 2025. The Gully and St. Anns Bank Marine Protected Areas are represented by the yellow polygons.

Table 10. List of terrestrial bird species observed during surveys completed on the EN728 mission from March 29 to April 17, 2025.

Family	Common Name	Latin	Total No.
Terrestrial birds			
Emberizidae	Unidentified Sparrows	Emberizidae	6
	Dark-eyed Junco	Junco hyemalis	1
Regulidae	Golden-crowned Kinglet	Regulus satrapa	2
Picidae	Northern Flicker	Colaptes auratus	1
	Unknown Bird	Aves	2
Total			12

Table 11. List of non-avian species observed during surveys completed on the EN728 mission from from March 29 to April 17, 2025.

Common Name	Latin	Total No.
Marine mammals		
Harbour Porpoise	Phocoena phocoena	5
Bottlenose Dolphin	Tursiops truncatus	2
Long-finned Pilot Whale	Globicephala melas	15
Unidentified cetacean	Cetacea	3
Unidentified seal	Phocidae	1
Total		26

Table 12. List of marine bird species observed during surveys within The Gully Marine Protected Area on April 12 and 14, 2025 during the EN728 mission.

Common Name	Latin	Total No.
Unidentified Murres	Uria	9
Unidentified Auks	Alcidae	8
Common Murre	Uria allge	8
Black-legged Kittiwake	Rissa tridactyla	5
Black Guillemot	Cepphus grylle	4
Great Black-backed Gull	Larus marinus	4
Atlantic Puffin	Fratercula arctica	3
Common Eider	Somateria mollissima	2
Thick-billed Murre	Uria lomvia	1
Total		44

Table 13. List of marine bird species observed during surveys within the St. Anns Bank Marine Protected Area on April 7 and 8, 2025 during the EN728 mission.

Common Name	Latin	Total No.
Unidentified Murres	Uria	54
Black-legged Kittiwake	Rissa tridactyla	35
Unidentified Auks	Alcidae	26
Herring Gull	Larus argentatus	11
Northern Fulmar	Fulmarus glacialis	9
Common Murre	Uria aalge	8
Northern Gannet	Morus bassanus	8
Ring-billed Gull	Larus delawarensis	5
Unidentified Gulls	Larus	8
Thick-billed Murre	Uria Iomvia	3
Leach's Storm-Petrel	Oceanodroma	1
Dona wa ili	leucorhoa Alaa tarda	4
Razorbill	Alca torda	1
Sooty Shearwater	Ardenna griseus	1
Unidentified Terns	Sterna .	1
Great Black-backed Gull	Larus marinus	1
Total		172

5 Data Management Summary

5.1 Metadata Collection and Archival

Both digital and paper logs were used to record sample and event metadata during the EN728 mission. Paper logs included CTD 'deck' sheets, ring net, mooring, Argo float, chlorophyll laboratory and underway sample logs. ELOG, an electronic logbook system for collecting event metadata, was used to log the time, ship's position, and sounding associated with certain logistical aspects of each gear deployment (e.g., deployed, on bottom, and recovered). This electronic logbook was accessible on the ship's network and mobile devices. In addition, an ELOG observations log was used to record detailed comments and observations on cruise activities. An underway log was also used to record the occurrence of sample collection, including time and position. The ELOG configuration, deployment and backup was managed using Git locally, and was pushed to GitHub upon return (https://github.com/dfo-mar-odis/azmp_elog/tree/EN728). The recording of metadata in ELOG facilitates the upload of bottle samples and plankton data to the BioChem repository.

ELOG was run from a Windows 10 laptop in the Main Laboratory near the CTD acquisition computer, while a second laptop was placed in the Wet Laboratory to assist the ring net operator in logging their events. The GPS and sounder feed for ELOG from the ship's network was read using Python scripts called from the ELOG configuration file. Two tablets were used to access ELOG while conducting ring net operations on the starboard deck.

Digital filtration logs were used by laboratory staff for logging details associated with the processing of collected water. These filtration logs are generated using the R statistical software from the planned water budget for each station. A laptop was placed in the Main Laboratory to facilitate the access and modification of these digital filtration logs.

All digital data were backed up at least daily on the network or on an external hard drive. At the end of the mission all data were copied and paper logs were scanned and sent to BIO Data Services for upload and archival into their protected server.

5.2 DFO At-sea Reporting Template (DART)

The in-house DFO At-sea Reporting Template <u>DART</u> was used to compile and reformat all discrete data collected and analyzed at sea (dissolved oxygen, chlorophyll, and salinity) to check the data and facilitate later processing and archiving. This process involved loading the ELOG files, the CTD bottle (.btl) files that contain the CTD sensor values associated with each bottle, and bottle sample measurements processed at sea. DART was also used to produce reports of the linked bottle and sensor measurements, to facilitate the quality control of both sensor and bottle measurements while at sea.

5.3 Data Submission to Global Telecommunications Systems

Global Telecommunications Systems (GTS) houses oceanographic data for the primary purpose of weather forecasting. However, the data are also available for modellers to assimilate into their climate forecasting. DFO's representative in GTS is Environment and Climate Change Canada.

AZMP submits CTD data to GTS via MEDS (Marine Environmental Data Section, Ocean Sciences Division, DFO) at regular intervals throughout each mission to MEDS-SDMM.XNCR@dfo-mpo.gc.ca. The data must be sent within 30 days of collection. The files submitted are a customized .txt file called an IGOSS file, which is generated using the in-house CTD post-processing software CTDDAP.

6 Operational Considerations and Issues of Note

This section contains a brief summary of the various operational considerations or issues encountered with science equipment and/or data and sample post-processing during the EN728 mission. This information should help to guide both CTD and laboratory post-processing procedures, and future interpretation of the data collected on the mission.

6.1 CTD Operations

- 1. The CTD standard operating procedure used during CTD data acquisition from Events 001 to 061 differed slightly between CTD computer operators on the day (07:00-19:00) and night (19:00-07:00) shifts. For casts collected during the day shift, the CTD deck box was turned on only after the CTD-Rosette was deployed and resting at its 10-m soak depth. While this appeared to have no issue on the resulting cast data and removal of the soak from the downcast, this procedure was changed starting on Event 062 so that the deck unit was turned on just prior to the initial deployment of the CTD-Rosette system, so that the procedures were consistent between day and night shift deployments.
- 2. Several Niskin bottle misfires occurred throughout the mission. In some cases these misfires were consistently from the same bottle, which was mitigated by changing the bottle position on the rosette, or by changing trigger mechanism. In all cases, these misfires occurred at depths where water samples were collected in duplicate, which provided enough water to satisfy the amount of samples collected by both DFO and Dalhousie University science staff. Thus no samples were lost as a result of these misfires. Comments related to bottle misfires were captured in the ELOG Comments field presented in Table 3.

6.2 Ring Net Operations

1. Ring net operations were aborted and re-deployed at several stations (PL_06, NEC_04, and GUL_03) due to the crossbow sliding down the wire, invalidating the sample. In all cases, the net was re-deployed successfully after the crossbow was re-adjusted and tightened on the wire. This issue was more prominent when using one particular crossbow that had a slightly smaller groove for the wire on its top clamp. At station HL_01, the PVC cap fell off the cod end of the net, resulting in the loss of the sample upon recovery. At station STAB_05, the winch wire rubbed against the vessel's winch cab (known as the 'dog house'), and the net descent was paused for a long duration at 200 m. It was decided to recover the net and re-deploy.

6.3 Mooring Operations

1. The acoustic receiver moorings at stations G02, G03, and G05 could not be recovered during the mission. The status of the receivers at stations G02 and G03 showed a tilt ranging

between 56-58° and 68-79°, respectively, suggesting they were laying near-horizontal on the seabed. Communications could not be established with the release at station G05.

6.4 Flow-Through System

1. The BIO flow-through system was initially connected to the vessel's uncontaminated science seawater outflow modulated by an impeller pump. However, on April 6 it was noticed that the outflow from the system had suddenly stopped. The power to the pump was evaluated by the vessel's engineers and turned back on. On April 9 and again on April 10, the impeller pump had shut off again unexpectedly. As these shut offs became more frequent, a decision was made to switch the BIO flow-through system to the science seawater modulated by the vessel's diaphragm pump on April 14. The disruption and shut down of the impeller pump also affected the only intake temperature sensor for both science seawater pumps, which is inline with the impeller pump. Consequently, the intake temperature for the BIO flow-through system was switched to a temperature sensor located on the transducer. The depth of this sensor is 5 m below sea surface, and was considered comparable to the impeller pump intake temperature.

7 Acknowledgements

We would like to thank all science staff of the EN728 mission for their dedication and hard work to make the mission a success. We also thank Commanding Officer Christopher Armanetti, as well as the officers, crew, and marine technicians of the RV *Endeavor* for their dedication and support during the mission.

We thank Jay Barthelotte, Regional Vessel Coordinator, Ocean and Ecosystem Sciences Division (OESD), DFO Maritimes Region, for coordinating the logistics of the vessel's scheduling and arrival. We would like to thank Jennifer Field, Mike Vining, and Katie Warman (Ocean Engineering and Technology Section, DFO) for their assistance in the mobilization and/or demobilization of the science equipment used on the mission. We thank Dennis McGillicuddy and Mike Brosnahan (WHOI) for facilitating the installation of the IFCB system on board.

We would also like to thank Justine McMillan and Benoit Casault (DFO, OESD) for their review of this report. This document was produced using the <u>csasdown R package</u> using RStudio version 2024.09.1 and R version 4.4.2 (R Core Team, 2024).

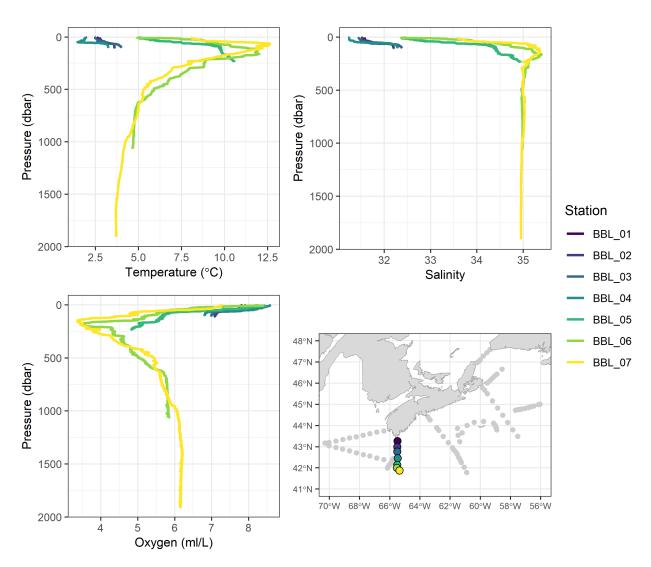
Funding for this mission was provided by DFO's National Science At-Sea Program.

8 References

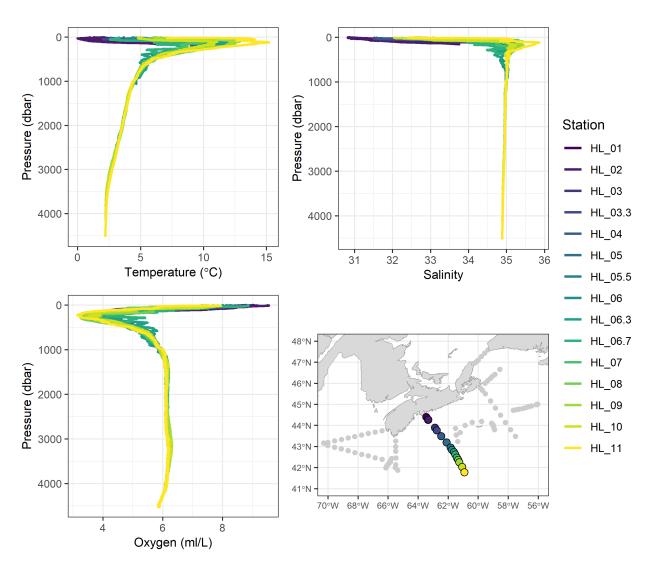
- Beazley, L., Cardoso, D., Gordon, C., and Gjerdrum, C. 2024. Mission report for the maritimes region atlantic zone monitoring program 2024 spring survey (TEL2024880). Can. Tech. Rep. Hydrogr. Ocean Sci. 386: vii 102 p.
- Cetinić, I., Poulton, N., and Slade, W.H. 2016. <u>Characterizing the phytoplankton soup: Pump and plumbing effects on the particle assemblage in underway optical seawater systems.</u> Optics Express 24(18): 13 pp.
- Devine, L., Kennedy, M.K., St-Pierre, I., Lafleur, C., Ouellet, M., and Bond, S. 2014. <u>BioChem: The fisheries and oceans canada database for biological and chemical data.</u> Can. Tech. Rep. Fish. Aquat. Sci. 3073: iv + 40 p.
- Dickson, A.G., Sabine, C.L., and Christian (Eds.)., J.R. 2007. <u>Guide to best practices for ocean CO2 measurements</u>. PICES Special Publication 3: 191 p.
- Gjerdrum, C., Fifield, D.A., and Wilhelm, S.I. 2012. <u>Eastern canada seabirds at sea (ECSAS)</u> standardized protocol for pelagic seabird surveys from moving and stationary platforms. Can. Wildl. Serv. Tech. Rep. Ser. No. 515: vi + 37 pp.
- Head, E.J.H., and Harris, L.R. 1992. <u>Chlorophyll and carotenoid transformation and destruction by Calanus spp. Grazing on diatoms.</u> Mar. Ecol. Prog. Ser. 86: 229–238.
- Hoepffner, N., and Sathyendranath, S. 1992. <u>Bio-optical characteristics of coastal waters:</u> Absorption spectra of phytoplankton and pigment distribution in the western north atlantic. Limnol. Ocean. 37(8): 1660–1679.
- Hoepffner, N., and Sathyendranath, S. 1993. <u>Determination of the major groups of phytoplankton pigments from the absorption spectra of total particulate matter.</u> J. Geophys. Res. 98(C12): 22789–22803.
- Li, B., and Dickie, P.M. 2001. Monitoring phytoplankton, bacterioplankton, and virioplankton in a coastal inlet (bedford basin) by flow cytometry. Cytometry. 44: 236–246.
- Mannino, A., Novak, M.G., Nelson, N.B., Belz, M., Berthon, N.V., Blough, E.J., Boss, E., Bricaud, A., Chaves, J., Del Castillo, C., Del Vecchio, R., D'Sa, E.J., Freeman, S., Matsuoka, A., Miller, R.L., R., N.A., Röttgers, R., Tzortziou, M., and Werdell, P.J. 2019. Measurement protocol of absorption by chromophoric dissolved organic matter (CDOM) and other dissolved materials. *In* Inherent optical property measurements and protocols: Absorption coefficient. IOCCG, Dartmouth, NS, Canada.
- Mitchell, M.R., Harrison, G., Kevin, K., Gagné, A., Maillet, G., and Strain, P. 2002. <u>Atlantic zonal monitoring program sampling protocol.</u> Can. Tech. Rep. Fish. Hydrogr. Ocean Sci. 223: iv + 23 p.
- Scientific, S.-B. 2024a. Calculate temperature and conductivity slope and offset correction

coefficients. Application note 31.

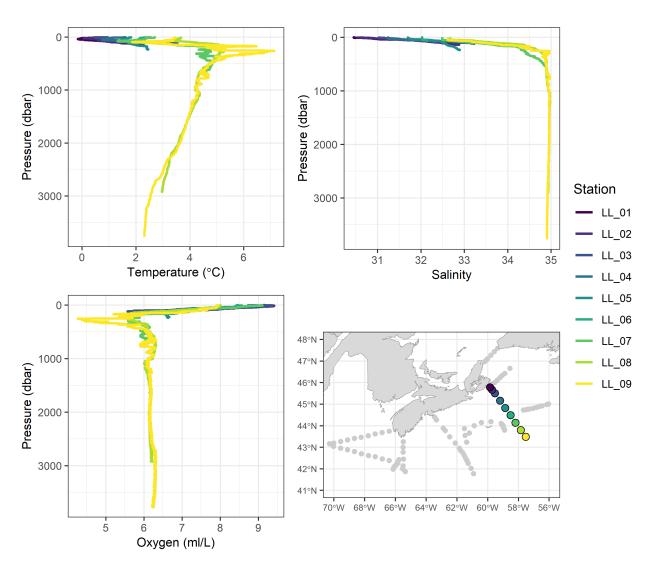
Scientific, S.-B. 2024b. SBE 43 DO sensor calibration and data corrections. Application note 64-2.

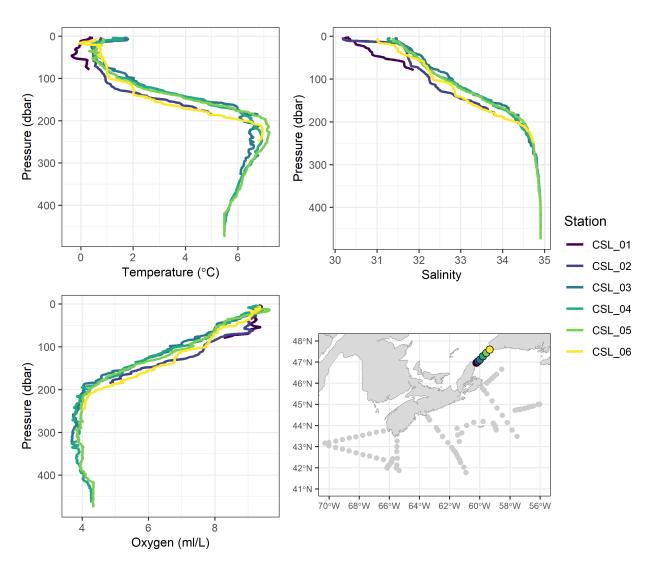

Wong, A.P., Wijffels, S.E., Riser, S.C., Pouliquen, S., Hosoda, S., Roemmich, D., Gilson, J., Johnson, G.C., Martini, K., Murphy, D.J., and al., et. 2020. <u>Argo data 1999-2019: Two million temperature-salinity profiles and subsurface velocity observations from a global array of profiling floats.</u> Frontiers in Marine Science 7.

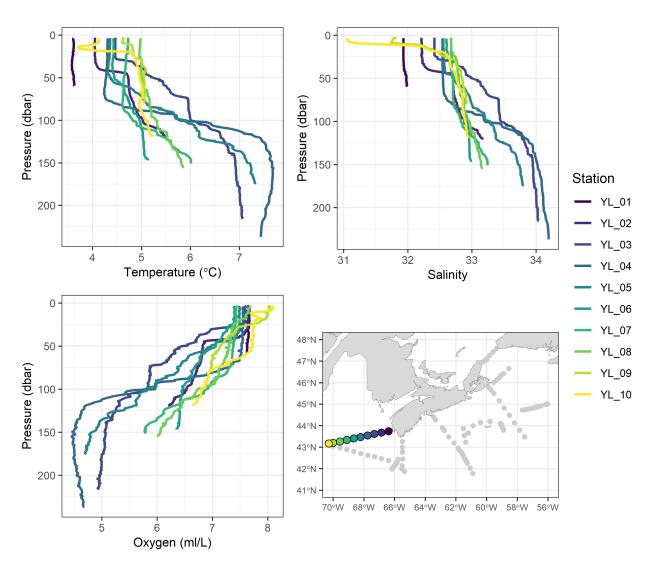
APPENDIX A Vertical Profiles of Temperature, Salinity, Dissolved Oxygen

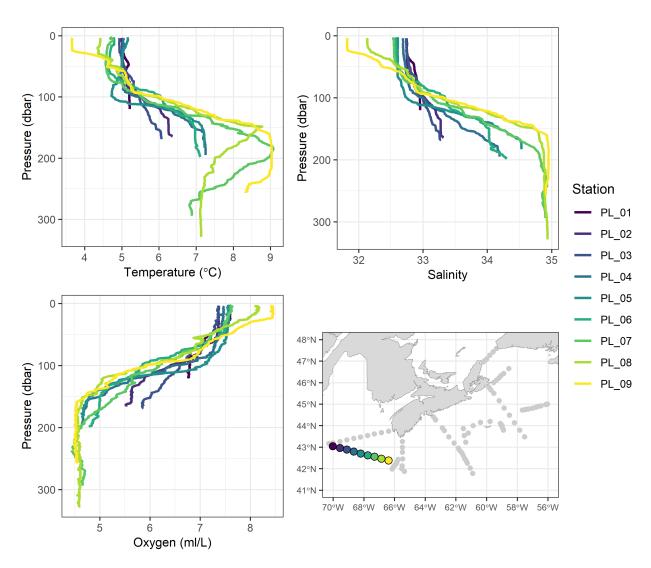

This appendix illustrates the vertical profiles of temperature, salinity, and dissolved oxygen for each station sampled during the EN728 mission. Profile plots are organized by hydrographic section (e.g., Halifax Line). These plots were generated routinely throughout the mission and compared against the corresponding bottle salinity and dissolved oxygen measurements obtained via Winkler titrations as a tool to A) evaluate any discrepancies between the dual sensors, B) evaluate which of the dual sensors more closely reflected the corresponding bottle measurements generated at sea, a task which helps guide the final sensor calibration process, and C) evaluate the laboratory measurements for visual outliers. Outliers in the bottle data were identified based on their divergence from replicate samples, when collected, or whether they fell far from the CTD profile data, and were assigned quality control flags according to the quality control flag schema applied to data submitted in DFO's National Repository, BioChem (Devine et al. 2014).

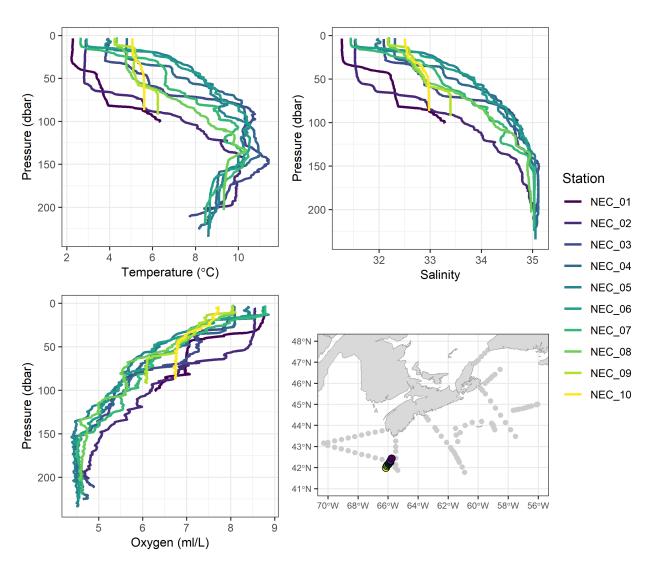
For the majority of the casts conducted during the mission there was excellent congruence between both the primary and secondary dissolved oxygen and conductivity sensors, and between the sensor and bottle data. Although data from the primary and secondary oxygen sensors were comparable, the secondary sensor was closer to the corresponding Winkler titration values than the primary.

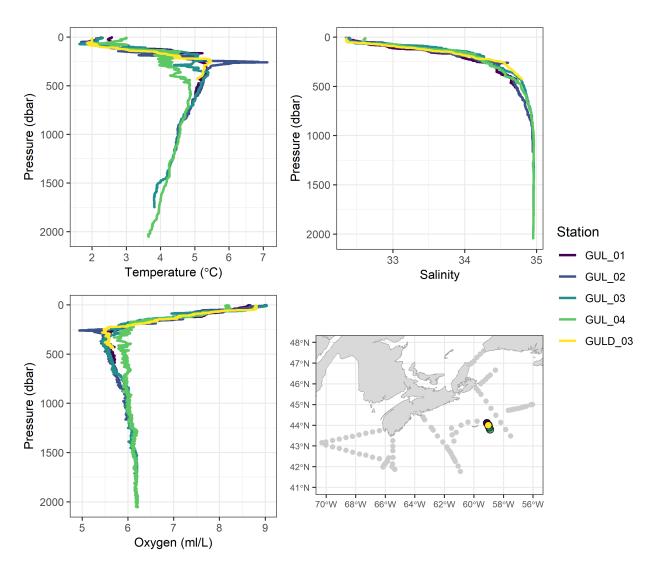

Although bottle chlorophyll measurements are not used to calibrate the sensor data, they were routinely compared against the chlorophyll fluorometer sensor data throughout the mission to evaluate the reliability of the sensor, and to ensure that all bottle sample IDs for parameters measured at sea were accounted for. The discrepancy between the sensor data and bottle measurements was higher, especially at the depth of the chlorophyll maximum, where the sensors underestimated chlorophyll concentration relative to the bottle measurements. Consequently, outliers were assigned to bottle measurements based only on their deviation from replicate bottle values, and not the sensor data.

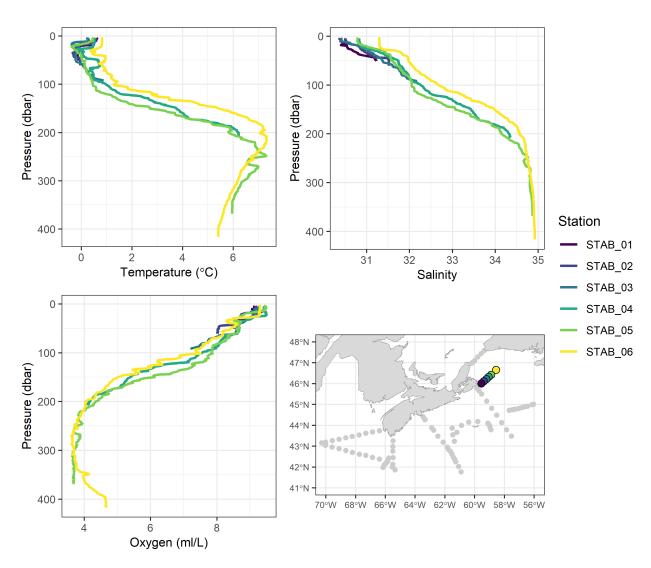

Figure A.1. Vertical profiles of temperature (top left), salinity (top right), and dissolved oxygen (bottom left) from stations sampled on the Browns Bank Line (BBL; bottom right) during the 2025 spring AZMP mission (EN728).

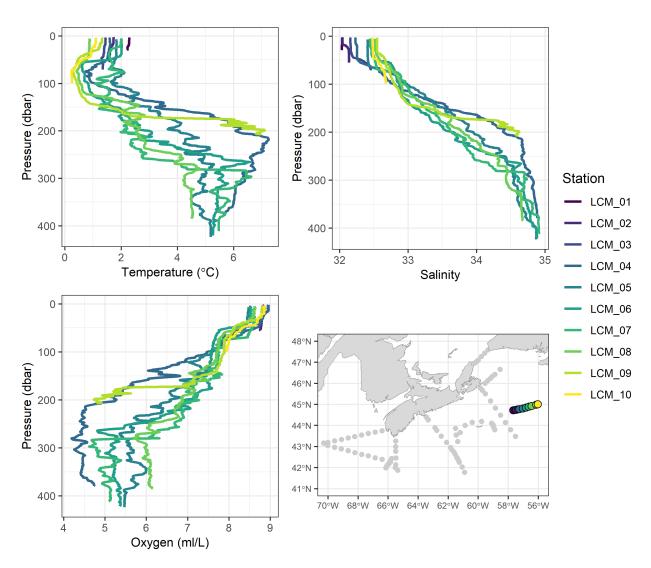

Figure A.2. Vertical profiles of temperature (top left), salinity (top right), and dissolved oxygen (bottom left) from stations sampled on the Halifax Line (HL; bottom right) during the 2025 spring AZMP mission (EN728).


Figure A.3. Vertical profiles of temperature (top left), salinity (top right), and dissolved oxygen (bottom left) from stations sampled on the Louisbourg Line (LL; bottom right) during the 2025 spring AZMP mission (EN728).


Figure A.4. Vertical profiles of temperature (top left), salinity (top right), and dissolved oxygen (bottom rleft) from stations sampled on the Cabot Strait Line (CSL; bottom right) during the 2025 spring AZMP mission (EN728).


Figure A.5. Vertical profiles of temperature (top left), salinity (top right), and dissolved oxygen (bottom left) from stations sampled on the Yarmouth Line (YL; bottom right) during the 2025 spring AZMP mission (EN728).


Figure A.6. Vertical profiles of temperature (top left), salinity (top right), and dissolved oxygen (bottom left) from stations sampled on the Portsmouth Line (PL; bottom right) during the 2025 spring AZMP mission (EN728).


Figure A.7. Vertical profiles of temperature (top left), salinity (top right), and dissolved oxygen (bottom left) from stations sampled in the Northeast Channel (NEC; bottom right) during the 2025 spring AZMP mission (EN728).

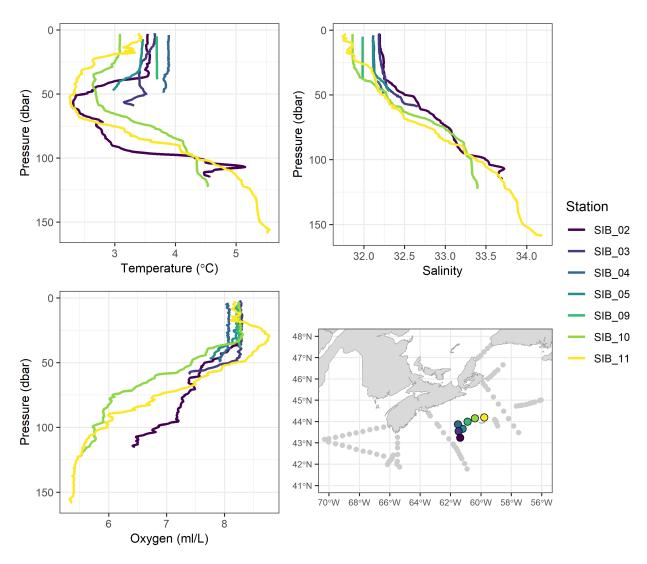

Figure A.8. Vertical profiles of temperature (top left), salinity (top right), and dissolved oxygen (bottom left) from stations sampled in the Gully (GUL; bottom right) during the 2025 spring AZMP mission (EN728).

Figure A.9. Vertical profiles of temperature (top left), salinity (top right), and dissolved oxygen (bottom left) from stations sampled on St. Anns Bank (STAB; bottom right) during the 2025 spring AZMP mission (EN728).

Figure A.10. Vertical profiles of temperature (top left), salinity (top right), and dissolved oxygen (bottom left) from stations sampled in the Laurentian Channel Mouth (LCM; bottom right) during the 2025 spring AZMP mission (EN728).

Figure A.11. Vertical profiles of temperature (top left), salinity (top right), and dissolved oxygen (bottom left) from stations sampled on Sable Island Bank (SIB; bottom right) during the 2025 spring AZMP mission (EN728).